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Abstract—Immersive video, such as virtual reality (VR) and
multi-view videos, is growing in popularity. Its wireless streaming
is an instance of general multicast, extending conventional unicast
and multicast, whose effective design is still open. This paper
investigates the optimization of general rate splitting with linear
beamforming for general multicast. Specifically, we consider a
multi-carrier single-cell wireless network where a multi-antenna
base station (BS) communicates to multiple single-antenna users
via general multicast. Linear beamforming is adopted at the BS,
and joint decoding is adopted at each user. We consider the
maximization of the weighted sum rate, which is a challenging
nonconvex problem. Then, we propose an iterative algorithm for
the problem to obtain a KKT point using the concave-convex
procedure (CCCP). The proposed optimization framework gen-
eralizes the existing ones for rate splitting for various types of
services. Finally, we numerically show substantial gains of the
proposed solutions over existing schemes and reveal the design
insights of general rate splitting for general multicast.

Index Terms—General multicast, general rate splitting, linear
beamforming, joint decoding, optimization, concave-convex pro-
cedure (CCCP).

I. INTRODUCTION

Conventional mobile Internet services include (traditional)
video, audio, web browsing, social networking, software
downloading, etc. These services can be supported by unicast,
single-group multicast, and multi-group multicast. Immersive
video, such as 360 video and multi-view video is growing
in popularity. When watching a tiled 360 video, the tiles in
a user’s current field-of-view (FoV) plus a safe margin are
usually transmitted to the user in case of an FoV change. On
the other hand, when watching a multi-view video, a user’s
current view and adjacent views are usually transmitted to
the user in case of a view switch. When streaming a popular
immersive video to multiple users simultaneously, multiple
messages (e.g., tiles for 360 video and views for multi-view
video) are transmitted to each user, and one message may be
intended for multiple users [1], [2], as illustrated in Fig. 1. This
emerging service plays an important role in online gaming,
self-driving, and cloud meeting, etc. but cannot perfectly adapt
to the conventional transmission schemes mentioned above.
This motivates us to consider general multicast (also referred
to as general connection [3] and general groupcast [4]) where
one message can be intended for any user. Clearly, general
multicast includes the three conventional transmission schemes
as special cases.

This work was supported in part by the National Key R&D Program of
China under Grant 2018YFB1801102 and Natural Science Foundation of
Shanghai under Grant 20ZR1425300. (Corresponding author: Ying Cui, e-
mail: cuiying@sjtu.edu.cn)

(a) 360 video (b) Multi-view video

Fig. 1. Applications of general multicast.

References [1], [2] are pioneer works for supporting wire-
less streaming of a 360 video [1] and wireless streaming of a
multi-view video [2], which are instances of general multicast.
Specifically, in [1], [2], Orthogonal Multiple Access (OMA)
is adopted to convert general multicast to per resource block
single-group multicast. While the OMA-based mechanisms are
easy to implement, spatial multiplexing gain is not exploited.
On the other hand, non-orthogonal transmission mechanisms
achieve higher transmission efficiency but are also more chal-
lenging due to interference. Space Division Multiple Access
(SDMA) and Non-Orthogonal Multiple Access (NOMA) are
two solutions. The cost to suppress interference in SDMA can
be high when the channels for some users are spatially aligned,
while decoding interference in NOMA may not be possible
when the interfering message rate is too high. Thus, SDMA
and NOMA may also have unsatisfactory performance. Rate
splitting, originally proposed to effectively support unicast
services [5], can partially suppress interference and partially
decode interference and hence may circumvent the limitations
mentioned above.

In [5], [6], the authors investigate the simplest form of
rate splitting for unicast, hereafter called 1-layer rate splitting,
for the two-user interference channel [5] and two-user multi-
antenna broadcast channel [6], respectively. In [8], the authors
investigate the precoder optimization of 1-layer rate splitting
for unicast for Gaussian multiple-input multiple-output chan-
nels. Later, 1-layer rate splitting for unicast is extended to
general rate splitting for unicast [9], 1-layer rate splitting for
unicast together with a multicast message intended for all users
[10], and multi-group multicast [11], respectively. Specifically,
[9]–[11] focus on the optimizations of rate splitting with lin-
ear beamforming. Optimization-based random linear network
coding design for general multicast has been studied in [3]
for wired networks. Besides general rate splitting for general
multicast has been studied in [4] for discrete memoryless
broadcast channels. Here, we are interested in Gaussian fading
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channels and specifically the linear beamforming design from
the optimization perspective. Besides, the optimization of
rate splitting with linear beamforming for unicast and its
slight generalizations in [10], [11] cannot apply to general
multicast. Therefore, for general multicast, the optimization
of general rate splitting with linear beamforming remains an
open problem.

This paper intends to shed some light on the above issue.
Specifically, we consider a multi-carrier single-cell wireless
network, where a multi-antenna base station (BS) communi-
cates to multiple single-antenna users via general multicast.
First, we present general rate splitting for general multicast
and characterize the achievable rate regions under linear beam-
forming at the BS and joint decoding at each user. Then, we
optimize the transmission beamforming vectors and rates of
sub-message units to maximize the weighted sum rate subject
to the achievable rate region constraints and power constraint.
Note that the proposed problem formulation includes those
in [9]–[12] as special cases. This problem is a challenging
nonconvex problem. Next, we propose an iterative algorithm
to obtain a KKT point using the concave-convex procedure
(CCCP). Finally, we numerically demonstrate substantial gains
of the proposed solutions over existing schemes and reveal the
design insights of general rate splitting for general multicast.

II. SYSTEM MODEL

In this section, we first introduce general multicast in a
single-cell wireless network and briefly illustrate its con-
nection with unicast, single-group multicast, and multi-group
multicast. Then, we present general rate splitting. Finally, we
illustrate the physical layer model and the implementation with
linear beamforming and joint decoding.

A. General Multicast

We consider a single-cell wireless network consisting of
one BS and K users. Let K , {1, . . . ,K} denote the set of
user indices. The BS has I independent messages. Let I ,
{1, . . . , I} denote the set of I messages. We consider general
multicast. Specifically, each user k ∈ K can request arbitrary
Ik messages in I, denoted by Ik ⊆ I, from the BS. We do not
have any assumptions on Ik, k ∈ K except that each message
in I is requested by at least one user, i.e., ∪k∈KIk = I [3].

To facilitate serving the K users, we partition the message
set I according to the requests from the K users. For all
S ⊆ K,S 6= ∅, let

PS ,

(⋂
k∈S

Ik

)⋂I − ⋃
k∈K\S

Ik

 (1)

denote the set of the messages that is requested by each user
in S and not requested by any user in K\S [1]. Define

P , {PS |PS 6= ∅,S ⊆ K,S 6= ∅},
S , {S|PS 6= ∅,S ⊆ K,S 6= ∅}.

Thus, P forms a partition of I and S specifies the user groups
corresponding to the partition. We refer to each element in P

Fig. 2. Wireless streaming of a tiled 360 video to three users. The
360 video is divided into 4× 4 tiles. The users have different FoVs
which overlap to certain extent. K = 3, I = 8, I1 = {1, 2, 5, 6},
I2 = {2, 3, 6, 7}, I3 = {5, 6, 9, 10}.

as a message unit.1 We can see that different message units in
P are requested by different user groups in S.

Example 1 (Illustration of P and S): As illustrated in Fig. 2,
we consider K = 3, I = 8, I1 = {1, 2, 5, 6}, I2 = {2, 3, 6, 7},
I3 = {5, 6, 9, 10}. Then, we have P{1} = {1}, P{2} = {3, 7},
P{3} = {9, 10}, P{1,2} = {2}, P{1,3} = {5}, P{1,2,3} = {6},
P = {P{1},P{2},P{3},P{1,2},P{1,3},P{1,2,3}}, and S =
{{1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}. There are 6 message
units that are requested by 6 groups of users, respectively.
For example, message unit P{1} is requested only by user 1,
message unit P{1,2} is requested by user 1 and user 2, and
message unit P{1,2,3} is requested by user 1, user 2, and user
3.

Remark 1 (Connection with Unicast and Multicast): The
considered general multicast includes conventional unicast,
single-group multicast, and multi-group multicast as special
cases. When I = K, Ik = 1, k ∈ K, and Ik 6= Ik′ , k, k′ ∈
K, k 6= k′, general multicast reduces to unicast. In this case,
P = {{1}, {2}, . . . , {K}} and S = {{1}, {2}, . . . , {K}}.
When I = 1, implying Ik = 1, k ∈ K, and Ik = Ik′ , k, k′ ∈
K, k 6= k′, general multicast becomes single-group multicast.
In this case, P = {{1}} and S = {K}. When 1 < I < K
and Ik = 1, k ∈ K, general multicast reduces to multi-group
(I-group) multicast. In this case, P = {{1}, {2}, . . . , {I}}
and S = {{k ∈ K|Ik = {1}}, . . . , {k ∈ K|Ik = {I}}}. The
general multicast considered in this paper, general connection
in [3], and general groupcast considered in [4] mean the same.

B. General Rate Splitting

We consider rate splitting in the most general form for
general multicast to serve the K users [4]. It allows each user
group to decode not only the desired message unit PS but also
part of the message unit of any other user group, PS′ for all
S ′ 6= S,S ′ ∈ S, to flexibly reduce the interference level. For
all S ∈ S, let GS , {X |S ⊆ X ⊆ K}. Namely, GS collects
all 2K−|S| subsets of K that contain S. Define G ,

⋃
S∈S GS .

1P and S are assumed to be given in [4].
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Obviously, S ⊆ G. First, we split each message unit PS into
2K−|S| sub-message units, i.e.,

PS =
∏
G∈GS

PS,G , S ∈ S, (2)

where
∏

represents the Cartesian product. Accordingly, the
rate of the message unit PS , denoted by RS , is split into the
rates of the 2K−|S| sub-message units PS,G ,G ∈ GS ,2 denoted
by RS,G ,G ∈ GS i.e.,

RS =
∑
G∈GS

RS,G , S ∈ S. (3)

Let SG , {S ∈ S|S ⊆ G}. Then, for all G ∈ G, we re-
assemble the sub-message units PS,G ,S ∈ SG to form a
transmission unit P̃G with rate:

R̃G =
∑
S∈SG

RS,G , G ∈ G. (4)

That is, we first split |S| message units, PS ,S ∈ S, into∑
S∈S 2K−|S| sub-message units, PS,G ,G ∈ GS ,S ∈ S,

and then we re-assemble these sub-message units to form |G|
transmission units, P̃G ,G ∈ G.

Example 2 (Illustration of G and Gen-
eral Rate Splitting): For Example 1, we
have G{1} = {{1}, {1, 2}, {1, 3}, {1, 2, 3}},
G{2} = {{2}, {1, 2}, {2, 3}, {1, 2, 3}}, G{3} =
{{3}, {1, 3}, {2, 3}, {1, 2, 3}}, G{1,2} =
{{1, 2}, {1, 2, 3}}, G{1,3} = {{1, 3}, {1, 2, 3}},
G = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. As
shown in Fig. 2, we first split 6 message units into 17
sub-message units and then re-assemble the 17 sub-message
units to form 7 transmission units.

Remark 2 (Connection with Rate Splitting for Unicast and
Multicast): When general multicast degrades to unicast, the
proposed general rate splitting reduces to the general rate
splitting for unicast proposed in our previous work [9], which
extends the one-layer rate splitting for unicast [5]. When
general multicast degrades to single-group multicast, the pro-
posed general rate splitting reduces to the conventional single-
group multicast transmission as GS = G = {K},S ∈ S.
When general multicast degrades to multi-group multicast, the
proposed general rate splitting reduces to the one-layer rate
splitting for multi-group multicast [11].

C. Physical Layer Model and Implementation

The BS is equipped with M antennas, and each user has
one antenna. We consider a multi-carrier system. Let N and
N , {1, 2, . . . , N} denote the number of subcarriers and the
set of subcarrier indices, respectively. The bandwidth of each
subcarrier is B (in Hz). We consider a discrete-time system,
i.e., time is divided into fixed-length slots. We adopt the block
fading model, i.e., for each user and subcarrier, the channel
remains constant within each slot and is independent and iden-
tically distributed (i.i.d.) over slots. We consider slow fading
and study an arbitrary slot. Let h , (hk,n)k∈K,n∈N ∈ CM×1

2When S = K, GS = {S} and the message unit PS will not be split. For
ease of exposition, we let PS = PS,S and RS = RS,S for S = K.

denote the system channel state. Assume that user k ∈ K
knows his channel state hk , (hk,n)n∈N and the system
channel state h is known to the BS.

For all G ∈ G, transmission unit P̃G is encoded (channel
coding) into codewords that span over the N subcarriers. Let
sG,n ∈ C denote a symbol for P̃G that is transmitted on the n-
th subcarrier. For all n ∈ N , let sn , (sG,n)G∈G , and assume
that E[snsHn ] = I. We consider linear beamforming. For all
n ∈ N , let wG,n ∈ CM×1 denote the beamforming vector
for transmitting P̃G on subcarrier n. Using superposition
coding, the transmitted signal on subcarrier n, denoted by
xn ∈ CM×1, is given by:

xn =
∑
G∈G

wG,nsG,n, n ∈ N . (5)

The transmission power on subcarrier n ∈ N is given by∑
G∈G ‖wG,n‖22, and the total transmission power is given

by
∑
n∈N

∑
G∈G ‖wG,n‖22. The total transmission power con-

straint is given by: ∑
n∈N

∑
G∈G
‖wG,n‖22 ≤ P. (6)

Here, P denotes the transmission power budget. Define G(k) ,
{G ∈ G|k ∈ G}, k ∈ K. Then, the received signal at user
k ∈ K on subcarrier n ∈ N , denoted by yk,n ∈ C, is given
by:

yk,n = hHk,nxn + zk,n = hHk,n
∑
G∈G(k)

wG,nsG,n

+ hHk,n
∑
G′∈G\G(k)

wG′,nsG′,n + zk,n,

k ∈ K, n ∈ N , (7)

where the last equality is due to (5), and zk,n ∼ CN (0, σ2)
is the additive white gaussian noise (AWGN). In (7), the first
term represents the desired signal, and the second represents
the interference. It is noteworthy that the main idea of rate
splitting is to make the undesired messages partially decodable
in order to reduce interference [9]. To exploit the full potential
of the general rate splitting for general multicast, we consider
joint decoding at each user.3 That is, each user k ∈ K jointly
decodes the desired transmission units P̃G ,G ∈ G(k). Thus, the
achievable rate region of the transmission units is described
by the following constraints:∑
G∈X

R̃G

≤ B
∑
n∈N

log2

(
1 +

∑
G∈X |hHk,nwG,n|2

σ2 +
∑
G′∈G\G(k) |hHk,nwG′ ,n|2

)
,

X ⊆ G(k), k ∈ K, (8)

where R̃G is given by (4).

III. OPTIMIZATION PROBLEM FORMULATION

In this section, we would like to optimize the transmission
beamforming vectors w , (wG,n)G∈G,n∈N and rates of

3We can easily extend it to successive decoding as in [9].
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the sub-message units R , (RS,G)S∈S,G∈G to maximize
the weighted sum rate,4

∑
S∈S αSRS , where the coefficient

αS ≥ 0 denotes the weight for message unit PS , subject to the
total transmission power constraint in (6) and the achievable
rate constraints in (8). Therefore, we formulate the following
optimization problem.

Problem 1 (Weighted Sum Rate Maximization):

max
w,R�0

∑
S∈S

αSRS

s.t. (6), (8).

Remark 3 (Connection with Rate Splitting for Unicast and
Multicast): When general multicast degrades to unicast, Prob-
lem 1 reduces to the weighted sum rate maximization problem
for general rate splitting for unicast in [9]. When general mul-
ticast degrades to single-group multicast, Problem 1 reduces
to the rate maximization problem for single-group multicast in
[12]. Finally, when general multicast degrades to multi-group
multicast, Problem 1 can be viewed as a generalization of the
weighted sum rate maximization for multi-group multicast in
[11].

Note that the objective function is linear, the constraint in
(6) is convex, and the constraints in (8) are nonconvex. Thus,
Problem 1 is nonconvex.5

IV. SOLUTION

In this section, we propose an iterative algorithm to obtain
a KKT point of Problem 1 using CCCP. First, we transform
Problem 1 into the following equivalent problem by intro-
ducing auxiliary variables e , (ek,n,X )X⊆G(k),k∈K,n∈N and
u , (uk,n,X )X⊆G(k),k∈K,n∈N and extra constraints:∑
G′∈G\G(k)

|hHk,nwG′ ,n|
2 + σ2

−

∑
G∈X
|hHk,nwG,n|2 +

∑
G′∈G\G(k)

|hHk,nwG′ ,n|2 + σ2

uk,n,X (h)
≤ 0,

X ⊆ G(k), k ∈ K, n ∈ N , (9)∑
G∈X

∑
S∈SG

RS,G =
∑
n∈N

ek,n,X , X ⊆ G(k), k ∈ K, (10)

2
ek,n,X

B ≤ uk,n,X , X ⊆ G(k), k ∈ K, n ∈ N . (11)

Problem 2 (Equivalent Problem of Problem 1):

max
w,R�0,e,u

∑
S∈S

αS
∑
G∈GS

RS,G

s.t. (6), (9), (10), (11).

Let (w?,R?, e?,u?) denote an optimal solution of Problem 2.

4The proposed problem formulation and solution method can be readily
extended to maximize the sum rate and worst-case rate as in [9].

5There are generally no effective methods for solving a nonconvex problem
optimally. The goal of solving a nonconvex problem is usually to design an
iterative algorithm to obtain a stationary point or a KKT point (which satisfies
necessary conditions for optimality if strong duality holds).

Theorem 1 (Equivalence Between Problem 1 and Prob-

lem 2): (w?,R?, e?,u?) satisfies 2
e?k,n,X

B = u?k,n,X , X ⊆
G(k), k ∈ K, n ∈ N . Furthermore, Problem 1 and Problem 2
are equivalent.

Proof 1: First, by introducing auxiliary variables e and u
and extra constraints:

2
ek,n,X

B = uk,n,X , X ⊆ G(k), k ∈ K, n ∈ N , (12)

we can equivalently transform Problem 1 into the following
problem:

max
w,R�0,e,u

∑
S∈S

αS
∑
G∈GS

RS,G

s.t. (6), (9), (10), (12).

Let (w‡,R‡, e‡(h),u‡) denote an optimal solution. It is obvi-
ous that (w‡,R‡) is an optimal solution of Problem 1. Next,
we transform the above problem to Problem 2 by relaxing the
constrains in (12) to the constraints in (11). By contradiction
and the monotonicity of the objective function with respect to
(w.r.t.) R in Problem 2, we can show that the constraints in
(11) are active at the optimal solution. Thus, (w‡,R‡, e‡,u‡)
is an optimal solution of Problem 2. Therefore, we can show
Theorem 1. �

Based on Theorem 1, solving Problem 1 is equivalent to
solving Problem 2. Problem 2 is a difference of convex func-
tions (DC) programming (one type of nonconvex problems)
and a KKT point can be obtained by CCCP [9].6 The main
idea of CCCP is to solve a sequence of successively refined
approximate convex problems, each of which is obtained by
linearizing the concave part and preserving the remaining
convex part in the DC problem. Specifically, at the i-th
iteration, the approximate convex problem of Problem 2 is
given as follows. Let (w(i),R(i), e(i),u(i)) denote an optimal
solution of the following problem.

Problem 3 (Approximation of Problem 2 at Iteration i):

max
w,R�0,e,u

∑
S∈S

αS
∑
G∈GS

RS,G

s.t. (6), (10), (11),

Lk,n,X (wn, uk,n,X ;w(i−1)
n , u

(i−1)
k,n,X ) ≤ 0,

X ⊆ G(k), k ∈ K, n ∈ N , (14)

where w
(i−1)
n , (w

(i−1)
G,n )G∈X∪(G\G(k)),

wn , (wG,n)G∈X∪(G\G(k)), and
Lk,n,X (wn, uk,n,X ;w

(i−1)
n , u

(i−1)
k,n,X ) is given by (13), as

shown at the top of next page.
Problem 3 is convex and can be solved efficiently us-

ing standard convex optimization methods. Problem 3 has
MN |G| +

∑
S∈S 2K−|S| + 2N

∑
k∈K(2

|G(k)| − 1) variables
and 1+(2N+1)

∑
k∈K(2

|G(k)|−1) constraints. Thus, when an
interior point method is applied, the computational complexity
for solving Problem 3 is O(K3.521.75×2

K

) as K → ∞. The

6CCCP can exploit the partial convexity and usually converges faster to a
KKT point than conventional gradient methods.
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Lk,n,X (wn, uk,n,X ;w(i−1)
n , u

(i−1)
k,n,X ) ,

∑
G′∈G\G(k)

|hH
k,nwG′ ,n|

2 + σ2 +

( ∑
G∈X
|hH

k,nw
(i−1)
G,n |

2 +
∑

G′∈G\G(k)

|hH
k,nw

(i−1)

G′ ,n
|2 + σ2

)
uk,n,X(

u
(i−1)
k,n,X

)2

−

2<

{ ∑
G∈X

w
(i−1)H
G,n hk,nh

H
k,nwG,n +

∑
G′∈G\G(k)

w
(i−1)H

G′ ,n
hk,nh

H
k,nwG′ ,n

}
+ 2σ2

u
(i−1)
k,n,X

, X ⊆ G(k), k ∈ K, n ∈ N . (13)

details of CCCP for obtaining a KKT point of Problem 2 are
summarized in Algorithm 1.7 As the number of iterations of
Algorithm 1 does not scale with the problem size [14], the
computational complexity for Algorithm 1 is the same as that
for solving Problem 3, i.e., O(K3.521.75×2

K

) as K →∞.
Theorem 2 (Convergence of Algorithm 1): As i → ∞,(

w(i),R(i), e(i),u(i)
)

obtained by Algorithm 1 converges to
a KKT point of Problem 2 [13].

Proof 2: The constraints in (6), (10), (11) are
convex, and the constraint function in (9) can
be regarded as a difference between two convex
functions, i.e.,

∑
G′∈G\G(k) |hHk,nwG′ ,n|2 + σ2 and∑

G∈X |h
H
k,nwG,n|2+

∑
G′∈G\G(k) |hH

k,nwG′
,n
|2+σ2

uk,n,X
. Therefore,

Problem 2 is a DC programming. Linearizing∑
G∈X |h

H
k,nwG,n|2+

∑
G′∈G\G(k) |hH

k,nwG′
,n
|2+σ2

uk,n,X
at

(w
(i−1)
n , u

(i−1)
k,n,X ) and preserving

∑
G′∈G\G(k) |hHk,nwG′ ,n|2 +

σ2 give Lk,n,X (wn, uk,n,X ;w
(i−1)
n , u

(i−1)
k,n,X ) in (13). Thus,

Algorithm 1 implements CCCP. It has been validated in [13]
that solving DC programming through CCCP always returns
a KKT point. Therefore, we can show Theorem 2. �

This paper focuses mainly on exploiting the full potential of
general rate splitting for general multicast. The computational
complexity of Algorithm 1 can be formidable with a large K.
We can use successive decoding to reduce the computational
complexity to O(K1.5|S|1.522K) as in [9].8 We can also
apply rate splitting with a reduced number of layers together
with successive decoding to further reduce the computational
complexity to O(K1.5|S|1.5(|Glb|2 + |Glb||S|K + |S|2K2))
as in [9], for some Glb satisfying S ⊆ Glb ⊆ G. Note that
|Glb| represents the reduced number of layers and satisfies
|S| ≤ |Glb| ≤ 2K−1.9 Low-complexity optimization methods
are beyond the scope of this paper.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed solu-
tion obtained by Algorithm 1, namely Prop-RS. We consider

7In practice, we can run Algorithm 1 multiple times with different feasible
initial points to obtain multiple KKT points and choose the KKT point with
the best objective value.

8Note that |S| may not scale with K and how |S| scales with K relies
on the user requests. In the case of |S| = O(1), the reduced computational
complexity is O(K1.522K), as K → ∞.

9In the case of |S| = O(1) and |Glb| = O(1), the reduced computational
complexity is O(N3.5K3.5) as K → ∞.

Algorithm 1 Obtaining a KKT Point of Problem 2
1: Initialization: Choose any feasible point of Problem 2

(w(0),R(0), e(0),u(0)) and set i = 0.
2: repeat
3: Obtain an optimal solution (w(i),R(i), e(i),u(i)) of Problem 3

with an interior point method.
4: Set i = i+ 1.
5: until the convergence criterion ‖(w(i),R(i), e(i),u(i)) −

(w(i−1),R(i−1), e(i−1),u(i−1))‖2 ≤ ε is met.

Fig. 3. General multicast setup in Section V.

three baseline schemes, namely 1L-RS, NoRS, and OFDMA.
1L-RS and NoRS extend 1-layer rate splitting [8] and SDMA
[15], both for unicast, to general multicast. More specifically,
1L-RS and NoRS implement Algorithm 1 to obtain KKT
points of Problem 1 with GS = {S,K},S ∈ S and with
GS = {S},S ∈ S, respectively. OFDMA considers the
maximum ratio transmission (MRT) on each subcarrier and
optimizes the subcarrier and power allocation [1].

In the simulation, we set K = 3, I = 7, I1 = {1, 4, 5, 7},
I2 = {2, 4, 6, 7}, and I3 = {3, 5, 6, 7}, as illustrated in
Fig. 3. As a result, we have P{1} = {1}, P{2} = {2},
P{3} = {3}, P{1,2} = {4}, P{1,3} = {5}, P{2,3} = {6},
and P{1,2,3} = {7}. Additionally, we set αS = 1/7,S ∈ S,
B = 30 kHz, N = 72, and σ2 = 10−9 W. We consider
spatially correlated channel with the correlation following the
one-ring scattering model as in [9]. When applying the one-
ring scattering model, let G denote the number of user groups.
We set the same angular spreads for the G groups and the same
azimuth angle for the users in each group as in [9]. Note that G
is related to the channel correlation among users. Specifically,
the correlation increases as G decreases. When G = 1,
all users belong to one group and have the same channel
covariance matrix. When G = 3, all users are in different
groups and have different channel covariance matrices. We
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Fig. 4. Weighted sum rate versus
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Fig. 5. Weighted sum rate versus
P .
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Fig. 6. Weighted sum rate versus
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Fig. 7. Rates of transmission units
of Prop-RS versus G.

generate 100 realizations of random system channel state,
solve the weighted sum rate maximization problem for each
realization, and evaluate the average of the weighted sum rate
of each scheme over the 100 random realizations.

Fig. 4, Fig. 5, and Fig. 6 illustrate the average of the
weighted sum rate versus the number of transmit antennas
M , the total transmission power budget P , and the number of
user groups G, respectively. From the three figures, we have
the following observations. Firstly, the weighted sum average
rate of each scheme increases with M , P , and G. Secondly,
Prop-RS outperforms the baseline schemes. The gain of Prop-
RS over 1L-RS is because the proposed solution unleashes
the full potential of the flexibility of rate splitting. The gain
of Prop-RS over NoRS arises because the cost for NoRS to
suppress interference is high. In contrast, rate splitting together
with joint decoding partially decodes interference and partially
treats interference as noise. The gain of Prop-RS over OFDMA
comes from an effective nonorthogonal transmission design.
Additionally, Fig. 6 shows that the gains of Prop-RS over
1L-RS and NoRS increase as G decreases, demonstrating the
advantage of flexibly dealing with interference in the presence
of channel correlation among users. Fig. 7 shows the rates
of the transmission units in the proposed solution versus
the number of user groups G. We can see that R̃{1}, R̃{2},
and R̃{3} increase with G, whereas R̃{1,2}, R̃{1,3}, R̃{2,3},

and R̃{1,2,3} decrease with G. This is because as channel
correlation among the users decreases, it is efficient to decode
less interference and treat more interference as noise.

VI. CONCLUSION

While applications such as content delivery are responsible
for a large and increasing fraction of Internet traffic, general
multicast communication will play a central role for future 6G
and beyond networks. This paper investigated the optimization
of general rate splitting for general multicast. We adopted

linear beamforming at the BS and joint decoding at each user.
We maximized the weighted sum rate under the achievable
rate region constraints and power constraint. We proposed
an iterative algorithm to obtain a KKT point. The proposed
optimization framework generalizes the existing ones for rate
splitting for unicast, single-group multicast, and multi-group
multicast. Numerical results demonstrate notable gains of the
proposed solution over existing schemes and reveal the impact
of channel correlation among users on the performance of gen-
eral rate splitting for general multicast. There are still some key
aspects that we leave for future investigations. One direction
is to go beyond linear approaches and investigate nonlinear
precoders such as binning. Another interesting perspective is
general multicast with partial channel state information at the
transmitter side.
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