Rate Splitting for General Multicast

Presenter: Lingzhi Zhao Author: Lingzhi Zhao*, Ying Cui*, Sheng Yang[†], Shlomo Shamai (Shitz)[‡], Yunbo Han[§], and Yunfei Zhang[§]

Shanghai Jiao Tong University* Paris-Saclay University[†]

Technion–Israel Institute of Technology \ddagger Tencent Technology \$

IEEE ICC 16-20, May 2022

Shanghai Jiao Tong University

Lingzhi Zhao

IEEE ICC 2022 1 / 25

イロン 不同 とくほど 不良 とうほ

Introduction

2 System Model

3 Problem Formulation and Solution

4 Numerical Results

5 Conclusion

Shanghai Jiao Tong University

Lingzhi Zhao

IEEE ICC 2022 2 / 25

イロト 不同 トイヨト イヨト 二日

1 Introduction

- 2 System Model
- **3** Problem Formulation and Solution
- 4 Numerical Results
- 5 Conclusion

Shanghai Jiao Tong University

IEEE ICC 2022 3 / 25

э

ヘロト 人間 とうほどう ほどう

Motivation

- Conventional mobile Internet services can be supported by unicast, single-group multicast, and multi-group multicast
- e.g., (traditional) video, audio, web browsing, social networking, etc.
 Immersive video cannot perfectly adapt to the conventional transmission schemes
 - e.g., 360 video [TWC'21] and multi-view video [TCOM'20]
 - Play an important role in online gaming and cloud meeting, etc.
 - Multiple messages are transmitted to each user, and one message may be intended for multiple users [TWC'21,TCOM'20]
- This motivates us to consider general multicast
 - One message can be intended for any user
 - Include the three conventional transmission schemes as special cases
 - Play a central role for future 6G and beyond networks

Previous Work

- Adopt orthogonal transmission to convert general multicast in immersive video streaming to per resource block single-group multicast
 - Wireless streaming of a 360 video [TWC'21] and an MVV [TCOM'20]
 - Easy to implement, but spatial multiplexing gain is not exploited
- Non-orthogonal transmission achieves higher transmission efficiency
 - The cost to suppress interference in SDMA can be high
 - Decoding interference in NOMA may not be possible
- Rate splitting partially suppresss interference and partially decodes interference
 - Unicast [TIT'81,TIT'13,JSAC'21], unicast together with a multicast message [TCOM'19], multi-group multicast [TVT'20]
 - Optimization of rate splitting for unicast and its slight generalizations cannot apply to general multicast
 - Rate splitting for general multicast for discrete memoryless broadcast channels [ISIT'17] from an information theory perspecitve
- Optimize general rate splitting for general multicast with linear beamforming

2 System Model

Shanghai Jiao Tong University

Lingzhi Zhao

ヘロト 人間 とくほ とくほ とう IEEE ICC 2022 6 / 25

э

General Multicast

- Consider a single-cell wireless network consisting of one BS and K users, where the BS has I independent messages
 - Let $\mathcal{K} \triangleq \{1, \dots, K\}$ denote the set of user indices
 - Let $\mathcal{I} \triangleq \{1, \dots, I\}$ denote the set of I messages
- Consider general multicast
 - Each user $k \in \mathcal{K}$ can request arbitrary I_k messages in \mathcal{I} , denoted by $\mathcal{I}_k \subseteq \mathcal{I}$, from the BS
 - Each message in \mathcal{I} is requested by at least one user, i.e., $\cup_{k \in \mathcal{K}} \mathcal{I}_k = \mathcal{I}$
- Partition the message set $\mathcal I$ according to the requests from K users
 - $\mathcal{P}_{\mathcal{S}} \triangleq (\bigcap_{k \in \mathcal{S}} \mathcal{I}_k) \bigcap (\mathcal{I} \bigcup_{k \in \mathcal{K} \setminus \mathcal{S}} \mathcal{I}_k)$ denotes the set of messages that is requested by each user in \mathcal{S} and not requested by any user in $\mathcal{K} \setminus \mathcal{S}$
 - $\mathcal{P} \triangleq \{\mathcal{P}_{\mathcal{S}} | \mathcal{P}_{\mathcal{S}} \neq \emptyset, \mathcal{S} \subseteq \mathcal{K}, \mathcal{S} \neq \emptyset\}$ forms a partition of \mathcal{I}
 - $\bullet\,$ Refer to each element in ${\boldsymbol {\cal P}}$ as a message unit
 - $S \triangleq \{S | \mathcal{P}_S \neq \emptyset, S \subseteq \mathcal{K}, S \neq \emptyset\}$ specifies the user groups corresponding to \mathcal{P}

Shanghai Jiao Tong University

Illustration Example

Figure: K = 3, I = 8, $\mathcal{I}_1 = \{1, 2, 5, 6\}$, $\mathcal{I}_2 = \{2, 3, 6, 7\}$, $\mathcal{I}_3 = \{5, 6, 9, 10\}$, $\mathcal{P}_{\{1\}} = \{1\}$, $\mathcal{P}_{\{2\}} = \{3, 7\}$, $\mathcal{P}_{\{3\}} = \{9, 10\}$, $\mathcal{P}_{\{1,2\}} = \{2\}$, $\mathcal{P}_{\{1,3\}} = \{5\}$, $\mathcal{P}_{\{1,2,3\}} = \{6\}$, $\mathcal{P} = \{\mathcal{P}_{\{1\}}, \mathcal{P}_{\{2\}}, \mathcal{P}_{\{3\}}, \mathcal{P}_{\{1,2\}}, \mathcal{P}_{\{1,3\}}, \mathcal{P}_{\{1,2,3\}}\}$, $\mathcal{S} = \{\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}$

Remark (Connection with Unicast and Multicast)

- When I = K, $I_k = 1$, and $I_k \neq I_{k'}$, $k \neq k'$, general multicast reduces to unicast
- When *I* = 1, implying *I_k* = 1, and *I_k* = *I_{k'}*, *k* ≠ *k'*, general multicast becomes single-group multicast
- When 1 < I < K and I_k = 1, general multicast reduces to multi-group (I-group) multicast

Shanghai Jiao Tong University

Lingzhi Zhao

General Rate Splitting

- Consider rate splitting in the most general form for general multicast
 - Each user group decodes not only the desired message unit $\mathcal{P}_{\mathcal{S}}$ but also part of the message unit of any other user group $\mathcal{P}_{\mathcal{S}'}$, $\mathcal{S}' \neq \mathcal{S}, \mathcal{S}' \in \mathcal{S}$
- Split each message unit $\mathcal{P}_{\mathcal{S}}$ into $2^{\mathcal{K}-|\mathcal{S}|}$ sub-message units

$$\mathcal{P}_{\mathcal{S}} = \prod_{\mathcal{G} \in \boldsymbol{\mathcal{G}}_{\mathcal{S}}} \mathcal{P}_{\mathcal{S},\mathcal{G}}, \ \mathcal{S} \in \boldsymbol{\mathcal{S}}$$

- $\mathcal{G}_{\mathcal{S}} \triangleq \{\mathcal{X} | \mathcal{S} \subseteq \mathcal{X} \subseteq \mathcal{K}\}$ collects all $2^{\mathcal{K} |\mathcal{S}|}$ subsets of \mathcal{K} that contain \mathcal{S} • Define $\mathcal{G} \triangleq \bigcup_{\mathcal{S} \in \mathcal{S}} \mathcal{G}_{\mathcal{S}}$
- The rate of the message unit P_S is split into the rates of the 2^{K−|S|} sub-message units P_{S,G}, G ∈ G_S

$$R_{\mathcal{S}} = \sum_{\mathcal{G} \in \boldsymbol{\mathcal{G}}_{\mathcal{S}}} R_{\mathcal{S},\mathcal{G}}, \ \mathcal{S} \in \boldsymbol{\mathcal{S}}$$

• Re-assemble the sub-message units $\mathcal{P}_{S,\mathcal{G}}$ to form a transmission unit $\widetilde{\mathcal{P}}_{\mathcal{G}}$ with rate:

$$\widetilde{R}_{\mathcal{G}} = \sum_{\mathcal{S} \in \boldsymbol{\mathcal{S}}_{\mathcal{G}}} R_{\mathcal{S},\mathcal{G}}, \ \mathcal{G} \in \boldsymbol{\mathcal{G}}$$
• $\boldsymbol{\mathcal{S}}_{\mathcal{G}} \triangleq \{\mathcal{S} \in \boldsymbol{\mathcal{S}} | \mathcal{S} \subseteq \mathcal{G}\}$

Illustration Example

 $\begin{array}{l} \mbox{Figure: } \mathcal{G}_{\{1\}} = \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}, \ \mathcal{G}_{\{2\}} = \{\{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}, \\ \mathcal{G}_{\{3\}} = \{\{3\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}, \ \mathcal{G}_{\{1,2\}} = \{\{1,2\}, \{1,2,3\}\}, \ \mathcal{G}_{\{1,3\}} = \{\{1,3\}, \{1,2,3\}\}, \\ \mathcal{G} = \{\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\} \end{array}$

Remark (Connection with Rate Splitting for Unicast and Multicast)

- When general multicast degrades to unicast, the proposed general rate splitting reduces to the general rate splitting for unicast [JSAC'21]
- When general multicast degrades to single-group multicast, the proposed general rate splitting reduces to the conventional single-group multicast transmission
- When general multicast degrades to multi-group multicast, the proposed general rate splitting reduces to 1-layer rate splitting for multi-group multicast [TVT'20]

Physical Layer Model and Implementation

- The BS is equipped with *M* antennas and each user has one antenna.
- Consider a multi-carrier system
 - N and N ≜ {1,2,...,N} denote the number of subcarriers and the set of subcarrier indices, respectively
 - The bandwidth of each subcarrier is B (in Hz)
- Consider a discrete-time system
 - Time is divided into fixed-length slots
- Adopt the block fading model
 - For each user and subcarrier, the channel remains constant within each slot and is i.i.d. over slots
- Consider slow fading and study an arbitrary slot
- $\mathbf{h} \triangleq (\mathbf{h}_{k,n})_{k \in \mathcal{K}, n \in \mathcal{N}} \in \mathbb{C}^{M \times 1}$ denotes the system channel state
 - Assume that user $k \in \mathcal{K}$ knows his channel state $\mathbf{h}_k \triangleq (\mathbf{h}_{k,n})_{n \in \mathcal{N}}$ and the system channel state \mathbf{h} is known to the BS

Shanghai Jiao Tong University

Physical Layer Model and Implementation

- For all $\mathcal{G} \in \mathcal{G}$, transmission unit $\widetilde{\mathcal{P}}_{\mathcal{G}}$ is encoded (channel coding) into codewords that span over the N subcarriers
- Consider linear beamforming and use superposition coding
- The transmitted signal on subcarrier *n*

$$\mathbf{x}_n = \sum_{\mathcal{G} \in \mathcal{G}} \mathbf{w}_{\mathcal{G},n} s_{\mathcal{G},n}, \ n \in \mathcal{N}$$

- $s_{\mathcal{G},n}$ denotes a symbol for $\widetilde{\mathcal{P}}_{\mathcal{G}}$ that is transmitted on the *n*-th subcarrier
 - For all $n \in \mathcal{N}$, let $\mathbf{s}_n \triangleq (s_{\mathcal{G},n})_{\mathcal{G} \in \boldsymbol{\mathcal{G}}}$ and assume that $\mathbb{E}[\mathbf{s}_n \mathbf{s}_n^H] = \mathbf{I}$
- $\mathbf{w}_{\mathcal{G},n} \in \mathbb{C}^{M \times 1}$ denotes the beamforming vector for transmitting $\widetilde{\mathcal{P}}_{\mathcal{G}}$ on subcarrier n
- The total transmission power constraint

$$\sum_{n \in \mathcal{N}} \sum_{\mathcal{G} \in \boldsymbol{\mathcal{G}}} \| \mathbf{w}_{\mathcal{G},n} \|_2^2 \le P$$

• P denotes the transmission power budget

Shanghai Jiao Tong University

Lingzhi Zhao

IEEE ICC 2022 12 / 25

Physical Layer Model and Implementation

• The received signal at user $k \in \mathcal{K}$ on subcarrier $n \in \mathcal{N}$

$$\begin{aligned} \mathbf{y}_{k,n} &= \mathbf{h}_{k,n}^{H} \mathbf{x}_{n} + z_{k,n} = \mathbf{h}_{k,n}^{H} \sum_{\mathcal{G} \in \boldsymbol{\mathcal{G}}^{(k)}} \mathbf{w}_{\mathcal{G},n} \mathbf{s}_{\mathcal{G},n} \\ &+ \mathbf{h}_{k,n}^{H} \sum_{\mathcal{G}' \in \boldsymbol{\mathcal{G}} \setminus \boldsymbol{\mathcal{G}}^{(k)}} \mathbf{w}_{\mathcal{G}',n} \mathbf{s}_{\mathcal{G}',n} + z_{k,n}, \ k \in \mathcal{K}, \ n \in \mathcal{N} \end{aligned}$$

•
$$\mathcal{G}^{(k)} \triangleq \{\mathcal{G} \in \mathcal{G} | k \in \mathcal{G}\}, k \in \mathcal{K}$$

• $z_{k,n} \sim C\mathcal{N}(0,\sigma^2)$ is AWGN

• Consider joint decoding at each user

- Each user $k \in \mathcal{K}$ jointly decodes the desired transmission units $\widetilde{\mathcal{P}}_{\mathcal{G}}$
- The achievable rate region of the transmission units

$$\begin{split} \sum_{\mathcal{G}\in\boldsymbol{\mathcal{X}}} \widetilde{R}_{\mathcal{G}} &\leq B \sum_{n\in\mathcal{N}} \log_2 \left(1 + \frac{\sum_{\mathcal{G}\in\boldsymbol{\mathcal{X}}} |\mathbf{h}_{k,n}^H \mathbf{w}_{\mathcal{G},n}|^2}{\sigma^2 + \sum_{\mathcal{G}'\in\boldsymbol{\mathcal{G}}\setminus\boldsymbol{\mathcal{G}}^{(k)}} |\mathbf{h}_{k,n}^H \mathbf{w}_{\mathcal{G}',n}|^2} \right), \\ & \boldsymbol{\mathcal{X}} \subseteq \boldsymbol{\mathcal{G}}^{(k)}, k \in \mathcal{K} \end{split}$$

Introduction

2 System Model

3 Problem Formulation and Solution

4 Numerical Results

5 Conclusion

Shanghai Jiao Tong University

Lingzhi Zhao

Weighted Sum Rate Maximization

- Optimization variables:
 - Transmission beamforming vectors $\mathbf{w} \triangleq (\mathbf{w}_{\mathcal{G},n})_{\mathcal{G} \in \boldsymbol{\mathcal{G}}, n \in \mathcal{N}}$
 - Rates of the sub-message units $\mathbf{R} \triangleq (R_{\mathcal{S},\mathcal{G}})_{\mathcal{S} \in \boldsymbol{S}, \mathcal{G} \in \boldsymbol{\mathcal{G}}}$
- Objective function:
 - Weighted sum rate $\sum_{\mathcal{S} \in \boldsymbol{\mathcal{S}}} \alpha_{\mathcal{S}} \textit{R}_{\mathcal{S}}$
- Optimization constraints:
 - Total transmission power constraint
 - Achievable rate constraints

Problem 1 (Weighted Sum Rate Maximization)

$$\begin{split} & \max_{\mathbf{w}, \mathbf{R} \succeq 0} \quad \sum_{\mathcal{S} \in \boldsymbol{\mathcal{S}}} \alpha_{\mathcal{S}} R_{\mathcal{S}} \\ & \text{s.t.} \quad \sum_{n \in \mathcal{N}} \sum_{\mathcal{G} \in \boldsymbol{\mathcal{G}}} \| \mathbf{w}_{\mathcal{G}, n} \|_{2}^{2} \leq P \\ & \sum_{\mathcal{G} \in \boldsymbol{\mathcal{X}}} \widetilde{R}_{\mathcal{G}} \leq B \sum_{n \in \mathcal{N}} \log_{2} \left(1 + \frac{\sum_{\mathcal{G} \in \boldsymbol{\mathcal{X}}} |\mathbf{h}_{k, n}^{H} \mathbf{w}_{\mathcal{G}, n}|^{2}}{\sigma^{2} + \sum_{\mathcal{G}' \in \boldsymbol{\mathcal{G}} \setminus \boldsymbol{\mathcal{G}}^{(k)}} |\mathbf{h}_{k, n}^{H} \mathbf{w}_{\mathcal{G}', n}|^{2}} \right), \ \boldsymbol{\mathcal{X}} \subseteq \boldsymbol{\mathcal{G}}^{(k)}, k \in \mathcal{K} \end{split}$$

Weighted Sum Rate Maximization

Remark (Connection with Rate Splitting for Unicast and Multicast)

- When general multicast degrades to unicast, Problem 1 reduces to the weighted sum rate maximization problem for general rate splitting for unicast in [JSAC'21]
- When general multicast degrades to single-group multicast, Problem 1 reduces to the rate maximization problem for single-group multicast in [TSP'06]
- When general multicast degrades to multi-group multicast, Problem 1 can be viewed as a generalization of the weighted sum rate maximization for multi-group multicast in [TVT'20]
- Problem 1 is a challenging nonconvex problem
- Solutions
 - Transform the nonconvex problem into an equivalent DC problem by introducing auxiliary variables and extra constraints
 - Obtain a KKT point using CCCP

Shanghai Jiao Tong University

・ロト ・四ト ・ヨト ・ヨト … ヨ

Introduction

- 2 System Model
- 3 Problem Formulation and Solution
- 4 Numerical Results

5 Conclusion

Shanghai Jiao Tong University

Lingzhi Zhao

Simulation Setup

- Baselines:
 - 1L-RS: extends 1-layer rate splitting [TSP'16] for unicast to general multicast
 - NoRS: extends SDMA for unicast to general multicast
 - OFDMA: considers the maximum ratio transmission (MRT) on each subcarrier and optimizes the subcarrier and power allocation [TWC'21]
- The proposed solution is termed Prop-RS
- Set K = 3, I = 7, $I_1 = \{1, 4, 5, 7\}$, $I_2 = \{2, 4, 6, 7\}$, $I_3 = \{3, 5, 6, 7\}$
- Set $\mathcal{P}_{\{1\}} = \{1\}$, $\mathcal{P}_{\{2\}} = \{2\}$, $\mathcal{P}_{\{3\}} = \{3\}$, $\mathcal{P}_{\{1,2\}} = \{4\}$, $\mathcal{P}_{\{1,3\}} = \{5\}$, $\mathcal{P}_{\{2,3\}} = \{6\}$, and $\mathcal{P}_{\{1,2,3\}} = \{7\}$
- Set $\alpha_{\mathcal{S}}=1/7, \mathcal{S}\in \boldsymbol{\mathcal{S}}$, B= 30 kHz, N= 72, and $\sigma^2=10^{-9}$ W
- Consider spatially correlated channel with the correlation following the one-ring scattering model as in [JSAC'21]
 - *G* denotes the number of user groups
- Evaluate the average of the weighted sum rate of each scheme over the 100 random realizations

Shanghai Jiao Tong University

IEEE ICC 2022 18 / 25

Numerical comparisons with baseline schemes

Figure: Weighted sum rate versus *M*.

Figure: Weighted sum rate versus *P*.

Figure: Weighted sum rate versus *G*.

- Weighted sum average rate of each scheme increases with M, P, G
- Prop-RS outperforms 1L-RS
 - Prop-RS unleashes the full potential of the flexibility of rate splitting
- Prop-RS outperforms NoRS
 - The cost for NoRS to suppress interference is high
 - Rate splitting together with joint decoding partially decodes interference and partially treats interference as noise

Shanghai Jiao Tong University

Lingzhi Zhao

IEEE ICC 2022 19 / 25

Numerical comparisons with baseline schemes

Figure: Weighted sum rate versus *M*.

Figure: Weighted sum rate versus *P*.

Figure: Weighted sum rate versus *G*.

イロト 不同 とうほう イヨト

- Prop-RS outperforms OFDMA
 - The gain comes from the effective nonorthogonal transmission design
- The gains of Prop-RS over 1L-RS and NoRS increase as G decreases
 - Prop-RS deals with interference in the presence of channel correlation among users flexibly

Numerical comparisons with baseline schemes

Figure: Rates of transmission units of Prop-RS versus *G*.

• $\widetilde{R}_{\{1\}}, \widetilde{R}_{\{2\}}$, and $\widetilde{R}_{\{3\}}$ increase with *G*, whereas $\widetilde{R}_{\{1,2\}}, \widetilde{R}_{\{1,3\}}, \widetilde{R}_{\{2,3\}}$, and $\widetilde{R}_{\{1,2,3\}}$ decrease with *G*

 As channel correlation among the users decreases, it is efficient to decode less interference and treat more interference as noise

Shanghai Jiao Tong University

Lingzhi Zhao

IEEE ICC 2022

21 / 25

Introduction

- 2 System Model
- 3 Problem Formulation and Solution
- 4 Numerical Results

Shanghai Jiao Tong University

Lingzhi Zhao

Conclusion

- Investigate the optimization of rate splitting for general multicast
- Adopt linear beamforming at BS and joint decoding at each user
- Maximize the weighted sum rate under the achievable rate region constraints and power constraint and propose an iterative algorithm to obtain a KKT point
 - The proposed optimization framework generalizes the existing ones for rate splitting for unicast and multicast
- Numerically show the notable gains of the proposed solution over existing schemes
- Future work
 - Go beyond linear approaches and investigate nonlinear precoders such as binning
 - Investigate general multicast with partial channel state information at the transmitter side
- Long version was submitted to IEEE Trans. Wireless Commun. [Link]

Shanghai Jiao Tong University

Lingzhi Zhao

3

イロト 不同 とうほう 不同 とう

Reference I

- C. Guo, L. Zhao, Y. Cui, Z. Liu, and D. Ng "Power-efficient transmission of multi-quality tiled 360 VR video in MIMO-OFDMA systems," *IEEE Trans. Wireless Commun.*, vol. 20, no. 8, pp. 5408-5422, Aug. 2021.
- [2] W. Xu, Y. Cui, and Z. Liu, "Optimal multi-view video transmission in multiuser wireless networks by exploiting natural and view synthesisenabled multicast opportunities," *IEEE Trans. Commun.*, vol. 68, no. 3, pp. 1494-1507, Mar. 2020.
- [3] Y. Cui, M. Médard, E. Yeh, D. Leith, F. Lai, and K. R. Duffy, "A linear network code construction for general integer connections based on the constraint satisfaction problem," *IEEE/ACM Trans. Netw.*, vol. 25, no. 6, pp. 3441-3454, Dec. 2017.
- [4] H. P. Romero and M. K. Varanasi, "Rate splitting, superposition coding and binning for groupcasting over the broadcast channel: A general framework," arXiv preprint arXiv:2011.04745, Nov. 2020.
- [5] T. Han and K. Kobayashi, "A new achievable rate region for the interference channel," *IEEE Trans. Inf. Theory*, vol. 27, no. 1, pp. 49-60, Jan. 1981.

Shanghai Jiao Tong University

イロト 不得 とうほう 不良 とう

Reference II

- [6] S. Yang, M. Kobayashi, D. Gesbert, and X. Yi, "Degrees of freedom of time correlated MISO broadcast channel with delayed CSIT," *IEEE Trans. Inf. Theory*, vol. 59, no. 1, pp. 315-328, Jan. 2013.
- [7] Z. Li, C. Ye, Y. Cui, S. Yang, and S. Shamai, "Rate splitting for multi-antenna downlink: Precoder design and practical implementation," *IEEE J. Select. Areas Commun.*, vol. 38, no. 8, pp. 1910–1924, Jun. 2020.
- [8] Y. Mao, B. Clerckx, and V. O. K. Li, "Rate-splitting for multi-antenna non-orthogonal unicast and multicast transmission: spectral and energy efficiency analysis," *IEEE Trans. Commun.*, vol. 67, no. 12, pp. 8754-8770, Dec. 2019.
- [9] H. Chen, D. Mi, B. Clerckx, Z. Chu, J. Shi, and P. Xiao, "Joint power and subcarrier allocation optimization for multigroup multicast systems with rate splitting," *IEEE Trans Veh. Technol.*, vol. 69, no. 2, pp. 2306-2310, Feb. 2020.
- [10] N. D. Sidiropoulos, T. N. Davidson and Z. Luo, "Transmit beamforming for physical-layer multicasting," *IEEE Trans. Signal Process.*, vol. 54, no. 6, pp. 2239-2251, Jun. 2006.
- H. Joudeh and B. Clerckx, "Robust transmission in downlink multiuser MISO systems: A rate-splitting approach," *IEEE Trans. Signal Process.*, vol. 64, no. 23, pp. 6227–6242, Dec. 2016.

Shanghai Jiao Tong University

IEEE ICC 2022 25 / 25