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An Optimization Framework for General Rate
Splitting for General Multicast
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Abstract— Immersive video, such as virtual reality (VR) and
multi-view videos, is growing in popularity. Its wireless stream-
ing is an instance of general multicast, extending conventional
unicast and multicast, whose effective design is still open. This
paper investigates general rate splitting for general multicast.
Specifically, we consider a multi-carrier single-cell wireless net-
work where a multi-antenna base station (BS) communicates to
multiple single-antenna users via general multicast. We consider
linear beamforming at the BS and joint decoding at each user in
the slow fading and fast fading scenarios. In the slow fading
scenario, we consider the maximization of the weighted sum
average rate, which is a challenging nonconvex stochastic problem
with numerous variables. To reduce computational complexity,
we decouple the original nonconvex stochastic problem into
multiple nonconvex deterministic problems, one for each system
channel state. Then, we propose an iterative algorithm for each
deterministic problem to obtain a Karush-Kuhn-Tucker (KKT)
point using the concave-convex procedure (CCCP). In the fast
fading scenario, we consider the maximization of the weighted
sum ergodic rate. This problem is more challenging than the one
for the slow fading scenario, as it is not separable. First, we pro-
pose a stochastic iterative algorithm to obtain a KKT point using
stochastic successive convex approximation (SSCA) and the exact
penalty method. Then, we propose two low-complexity iterative
algorithms to obtain feasible points with promising performance
for two cases of channel distributions using approximation and
CCCP. The proposed optimization framework generalizes the
existing ones for rate splitting for various types of services.
Finally, we numerically show substantial gains of the proposed
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solutions over existing schemes in both scenarios and reveal the
design insights of general rate splitting for general multicast.

Index Terms— General multicast, general rate splitting, lin-
ear beamforming, joint decoding, optimization, concave-convex
procedure (CCCP), stochastic successive convex approximation
(SSCA).

I. INTRODUCTION

CONVENTIONAL mobile Internet services include (tra-
ditional) video, audio, web browsing, social networking,

software downloading, etc. These services can be supported
by unicast, unicast with a common message, single-group
multicast, and multi-group multicast. Immersive video, such as
360 video (projection of virtual reality (VR) spherical video
onto a rectangle) and multi-view video (a key technique in
free-viewpoint television, naked-eye 3D and VR), is growing
in popularity. It is predicted that the VR market will reach
87.97 billion USD by 2025 [2]. When watching a 360 video,
the tiles in a user’s current FoV plus a safe margin are usually
transmitted to the user in case of FoV change. On the other
hand, when watching a multi-view video, a user’s current
view and adjacent views are usually transmitted to the user
in case of a view switch. In wireless streaming of a popular
immersive video to multiple users simultaneously, multiple
messages (e.g., tiles for 360 video and views for multi-view
video) are transmitted to each user, and one message may be
intended for multiple users [3], [4], as illustrated in Fig. 1. This
emerging service plays an important role in online gaming,
self-driving, and cloud meeting, etc. but cannot perfectly adapt
to the conventional transmission schemes mentioned above.
This motivates us to consider general multicast (also referred
to as general connection [8], [9] and general groupcast [10])
where one message can be intended for any user. Clearly,
general multicast includes conventional unicast, unicast with
a common message, single-group multicast, and multi-group
multicast as special cases.

References [3], [4], [5], and [6] are pioneer works for
supporting wireless streaming of a 360 video [3], [5] and
wireless streaming of a multi-view video [4], [6], which
are instances of general multicast. In [3], [4], [5], and [6],
Orthogonal Multiple Access (OMA), such as Time Division
Multiple Access (TDMA) [3], [4] and Orthogonal Frequency
Division Multiple Access (OFDMA) [5], [6], is adopted to
convert general multicast to per resource block single-group
multicast. While the OMA-based mechanisms are easy to
implement, spatial multiplexing gain is not exploited. On the
other hand, non-orthogonal transmission mechanisms achieve
higher transmission efficiency but are also more challenging
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Fig. 1. Applications of general multicast.

due to interference. Space Division Multiple Access (SDMA)
and Non-Orthogonal Multiple Access (NOMA) are two solu-
tions. The cost to suppress interference in SDMA can be high
when the channels for some users are spatially aligned, while
decoding interference in NOMA may not be possible when the
interfering message rate is too high. Thus, SDMA and NOMA
may have unsatisfactory performance. Rate splitting [7], [21]
is introduced to partially suppress interference and partially
decode interference to circumvent these limitations.

Rate splitting is originally proposed to effectively sup-
port unicast services [13]. Specifically, [13] investigates the
simplest form of rate splitting for unicast, hereafter called
1-layer rate splitting, for the two-user interference channel.
The idea of 1-layer rate splitting is as follows. First, each
individual message is split into one private part and one
common part, respectively. Then, the common parts of all the
messages are re-assembled into one common message that is
multicasted to all the users, and the private parts are unicasted
to the corresponding receivers, respectively. In this way, part
of the interference can be removed since it is decodable
by design. Later, in [14], 1-layer rate splitting is applied
to the multi-antenna broadcast channel (BC) and shown to
provide a strict sum degree of freedom gain of a BC when
only imperfect channel state information at the transmitter
is available. In [15], [16], [17], [18], and [19], the authors
investigate the precoder optimization of 1-layer rate split-
ting for unicast for Gaussian multiple-input multiple-output
channels. In particular, the rates and beamforming vectors for
common and private messages are optimized to maximize the
sum rate [15], [19], worst-case rate [16], [17] or ergodic sum
rate [18]. On the one hand, [20], [21] extend 1-layer rate
splitting for unicast to general rate splitting for unicast and
study the optimization of three-user unicast [20] and multi-
user unicast [21], respectively, with linear precoding. On the
other hand, [22], [23], [24], [25], [26] generalize 1-layer rate
splitting for unicast to 1-layer rate splitting for unicast together
with a multicast message intended for all users [22] and
multi-group multicast [23], [24], [25], [26], respectively, and
investigate the optimizations with linear beamforming. Note
that most works [15], [16], [17], [19], [20], [21], [22], [24],
[25], [26] focus on the slow fading scenario, whereas [18],
[23] concentrates on the fast fading scenario.

Optimization-based random linear network coding designs
for general multicast have been studied in [8] and [9] for wired
networks. Besides, general rate splitting for general multicast
has been studied in [10] for discrete memoryless broadcast
channels. Here, we are interested in Gaussian fading chan-
nels and specifically the linear beamforming design from the
optimization perspective. In general rate splitting for general
multicast, each message intended for a user group is split into

sub-messages, one for each subset of users containing the user
group. Then, the sub-messages intended for the same group
of users are re-assembled and multicasted to the group. In this
way, each user group decodes the desired message and part of
the message of any other user group. Note that general rate
splitting for general multicast produces more sub-messages
and enables more flexible and effective interference reduction
than brute-force application of general rate splitting for unicast
[20], [21] to general multicast.1 Besides, the optimizations
of rate splitting for unicast and its slight generalization
in [22], [23], [24], [25], and [26] cannot apply to general
multicast. Therefore, for general multicast in both slow fading
and fast fading scenarios, the optimization of general rate
splitting with linear beamforming remains an open problem.

This paper intends to shed some light on the above issue.
Specifically, we consider a multi-carrier single-cell wireless
network, where a multi-antenna base station (BS) communi-
cates to multiple single-antenna users via general multicast.
Our main contributions are summarized below.

• We present general rate splitting for general multicast
and illustrate its connection with conventional unicast,
unicast with a common message, single-group multicast,
and multi-group multicast. We adopt linear beamforming
at the BS and joint decoding at each user and characterize
the corresponding rate regions in the slow fading and fast
fading scenarios.

• In the slow fading scenario, we optimize the transmission
beamforming vectors and rates of sub-message units to
maximize the weighted sum average rate. Note that the
proposed problem formulation can reduce to those for
general rate splitting for unicast [21], unicast with a
common message [22], single-group multicast [27], and
1-layer rate splitting for multi-group multicast [24]. This
problem is a challenging nonconvex stochastic problem
with a large number of variables. To reduce computational
complexity, we decouple the original nonconvex stochas-
tic problem into multiple nonconvex deterministic prob-
lems, one for each system channel state. Then, for each
nonconvex deterministic problem, we propose an iterative
algorithm to obtain a Karush-Kuhn-Tucker (KKT) point
using the concave-convex procedure (CCCP).

• In the fast fading scenario, we optimize the transmission
beamforming vectors and rates of sub-message units to
maximize the weighted sum ergodic rate and show that
the problem formulation can reduce to the one for 1-layer
rate splitting for unicast [18]. This problem is more
challenging than the one for the slow fading scenario, as it
is not separable. First, we propose a stochastic iterative
algorithm to obtain a KKT point using stochastic succes-
sive convex approximation (SSCA) and the exact penalty
method. Then, we propose two low-complexity itera-
tive algorithms to obtain feasible points with promising
performance for two cases of channel distributions, i.e.,
spatially correlated channel and independent and identi-
cally distributed (i.i.d.) channel, using approximation and

1One can brute-forcely apply general rate splitting [20], [21] for unicast to
general multicast by treating a group of users who request the same message
as a virtual user.
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CCCP. It is noteworthy that the proposed optimization
framework also provides general rate splitting designs for
other service types in the fast fading scenario.

• We compare the complexities of the proposed solutions
in the slow fading and fast fading scenarios. We also
numerically demonstrate substantial gains of the proposed
solutions over existing schemes in both scenarios and
reveal the design insights of general rate splitting for
general multicast.

Notation: We represent vectors by boldface lowercase let-
ters (e.g., x), matrices by boldface uppercase letters (e.g.,
X), scalar constants by non-boldface letters (e.g., x), sets by
calligraphic letters (e.g., X ), and sets of sets by boldface
calligraphic letters (e.g., X ). The notation xi represents the
i-th element of vector x. The symbol (·)H denotes complex
conjugate transpose operator. ‖·‖2 denotes the Euclidean norm
of a vector. �{·} denotes the real part of a complex number.
E[·] denotes the statistical expectation. IM×M denotes the
M×M identity matrix. C denotes the set of complex numbers.

II. SYSTEM MODEL

In this section, we first introduce general multicast in a
single-cell wireless network and briefly illustrate its connec-
tion with unicast, unicast with a common message, single-
group multicast, and multi-group multicast. Then, we present
the physical layer model and general rate splitting with joint
decoding for general multicast.

A. General Multicast

We consider a single-cell wireless network consisting of
one BS and K users. Let K � {1, . . . , K} denote the set
of user indices. The BS has I independent messages. Let
I � {1, . . . , I} denote the set of the indices of I messages.
We consider general multicast. Specifically, each user k ∈ K
can request arbitrary Ik messages in I, denoted by Ik ⊆ I,
from the BS. We do not have any assumptions on Ik, k ∈ K
except that each message in I is requested by at least one
user, i.e., ∪k∈KIk = I.

To facilitate serving the K users, we partition the message
set I according to the requests from the K users. For all
S ⊆ K,S �= ∅, let

PS � (
⋂

k∈S Ik)
⋂

(I −
⋃

k∈K\S Ik) (1)

denote the set of the indices of messages requested by each
user in S and not requested by any user in K\S [3]. Define

P � {PS |PS �= ∅,S ⊆ K,S �= ∅},
S � {S|PS �= ∅,S ⊆ K,S �= ∅}.

Thus, P forms a partition of I and S specifies the user groups
corresponding to the partition. We refer to each element in P
as a message unit.2 We can see that different message units in
P are requested by different user groups in S.

Example 1 (Illustration of P and S for Two-User Case):
As illustrated in Fig. 2 (a), we consider K = 2, I = 6, I1 =
{1, 2, 5, 6}, I2 = {2, 3, 6, 7}. Then, we have P{1} = {1, 5},
P{2} = {3, 7}, P{1,2} = {2, 6}, P = {P{1},P{2},P{1,2}},

2P and S are assumed to be given in [10].

Fig. 2. Wireless streaming of a tiled 360 video to multiple users. The
360 video is divided into 4 × 4 tiles. The users have different FoVs which
overlap to certain extent.

and S = {{1}, {2}, {1, 2}}. There are 3 message units that
are requested by 3 groups of users, respectively. For example,
message unit P{1} is requested only by user 1 and message
unit P{1,2} is requested by user 1 and user 2.3

Example 2 (Illustration of P and S for Three-User Case):
As illustrated in Fig. 2 (b), we consider K = 3, I = 8,
I1 = {1, 2, 5, 6}, I2 = {2, 3, 6, 7}, I3 = {5, 6, 9, 10}.
Then, we have P{1} = {1}, P{2} = {3, 7}, P{3} =
{9, 10}, P{1,2} = {2}, P{1,3} = {5}, P{1,2,3} = {6},
P = {P{1},P{2},P{3},P{1,2},P{1,3},P{1,2,3}}, and S =
{{1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}. There are 6 message
units that are requested by 6 groups of users, respectively.
For example, message unit P{1} is requested only by user 1,
message unit P{1,2} is requested by user 1 and user 2, and
message unit P{1,2,3} is requested by user 1, user 2, and
user 3.

Remark 1 (Connection with Unicast and Multicast): The
considered general multicast includes conventional unicast,
unicast with a common message, single-group multicast,
and multi-group multicast as special cases. (i) When
I = K, Ik = 1, k ∈ K, and Ik �= Ik′ , k, k′ ∈ K, k �= k′,
general multicast reduces to unicast [15], [16], [17], [18],
[19], [20], [21]. In this case, P = {{1}, {2}, . . . , {K}}
and S = {{1}, {2}, . . . , {K}}. (ii) When I = K + 1, Ik =
2, k ∈ K, Ik �= Ik′ , k, k′ ∈ K, k �= k′, and | ∩k∈K Ik| = 1,
general multicast reduces to unicast with a common
message [22]. In this case, P = {{1}, {2}, . . . , {K},K}
and S = {{1}, {2}, . . . , {K},K}. (iii) When I = 1,
implying Ik = 1, k ∈ K, and Ik = Ik′ , k, k′ ∈ K, k �= k′,
general multicast becomes single-group multicast [27].
In this case, P = {{1}} and S = {K}. (iv) When
1 < I < K and Ik = 1, k ∈ K, general multicast
reduces to multi-group (I-group) multicast [23], [24],
[25], [26]. In this case, P = {{1}, {2}, . . . , {I}} and S =
{{k ∈ K|Ik ={1}}, {k ∈ K|Ik={2}}, . . . ,{k ∈ K|Ik ={I}}}.
The general multicast considered in this paper, general
connection in [8] and [9], and general groupcast considered
in [10] mean the same.

B. General Rate Splitting

We consider rate splitting in the most general form for
general multicast to serve the K users [10]. It allows each user
group to decode not only the desired message unit PS but also
part of the message unit of any other user group, PS′ for all

3This general multicast scenario coincides with unicast with a common
message.
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S′ �= S,S′ ∈ S, to flexibly reduce the interference level. For
all S ∈ S, let GS � {X |S ⊆ X ⊆ K}. Namely, GS collects
all 2K−|S| subsets of K that contain S. Define G �

⋃
S∈S GS .

Obviously, S ⊆ G. First, we split each message unit PS
into 2K−|S| sub-message units. Accordingly, the rate of the
message unit PS , denoted by RS , is split into the rates of the
2K−|S| sub-message units, denoted by RS,G ,G ∈ GS4 i.e.,

RS =
∑

G∈GS
RS,G , S ∈ S. (2)

Let SG � {S ∈ S|S ⊆ G}. Then, for all G ∈ G, we re-
assemble the sub-message units to form a transmission unit
P̃G with rate:

R̃G =
∑

S∈SG RS,G , G ∈ G. (3)

That is, we first split |S| message units, PS ,S ∈ S, into∑
S∈S 2K−|S| sub-message units and then we re-assemble

these sub-message units to form |G| transmission units,
P̃G ,G ∈ G.

Example 3 (Illustration of G and General Rate Splitting
for Two-User Case): For Example 1, we have G{1} =
{{1}, {1, 2}}, G{2} = {{2}, {1, 2}}, G = {{1}, {2}, {1, 2}}.
As shown in Fig. 2 (a), we first split 3 message units into
5 sub-message units and then re-assemble the 5 sub-message
units to form 3 transmission units.

Example 4 (Illustration of G and General Rate
Splitting for Three-User Case): For Example 2,
we have G{1} = {{1}, {1, 2}, {1, 3}, {1, 2, 3}},
G{2} = {{2}, {1, 2}, {2, 3}, {1, 2, 3}}, G{3} =
{{3}, {1, 3}, {2, 3}, {1, 2, 3}}, G{1,2} =
{{1, 2}, {1, 2, 3}}, G{1,3} = {{1, 3}, {1, 2, 3}},
G = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
As shown in Fig. 2 (b), we first split 6 message units
into 17 sub-message units and then re-assemble the 17 sub-
message units to form 7 transmission units.

Remark 2 (Connection with Rate Splitting for Unicast and
Multicast): (i) When general multicast degrades to unicast,
the proposed general rate splitting reduces to the general rate
splitting for unicast proposed in our previous work [21], which
extends the one-layer rate splitting for unicast [18]. (ii) When
general multicast degrades to unicast with a common message,
the proposed general rate splitting reduces to the one-layer
rate splitting for unicast with a common message [22]. (iii)
When general multicast degrades to single-group multicast,
the proposed general rate splitting reduces to the conventional
single-group multicast transmission [27]. (iv) When general
multicast degrades to multi-group multicast, the proposed
general rate splitting reduces to the one-layer rate splitting
for multi-group multicast [24].

C. Physical Layer Model

The BS is equipped with M antennas, and each user has
one antenna. We consider a multi-carrier system. Let N and
N � {1, 2, . . . , N} denote the number of subcarriers and
the set of subcarrier indices, respectively. The bandwidth of
each subcarrier is B (in Hz). We consider a discrete-time

4When S = K, GS = {S} and the message unit PS will not be split. For
ease of exposition, we let RS = RS,S for S = K.

system, i.e., time is divided into fixed-length slots. We adopt
the block fading model, i.e., for each user and subcarrier, the
channel remains constant within each slot and is independent
and identically distributed (i.i.d.) over slots. Let ϑk,n ∈ H
denote the M -dimensional random channel vector for user k
and subcarrier n, where H ⊆ CM denotes the M -dimensional
channel state space. Let ϑ � (ϑk,n)k∈K,n∈N ∈ HKN denote
the random system channel state, where HKN represents the
system channel state space. Besides, let h � (hk,n)k∈K,n∈N
denote a realization of ϑ in one slot, where hk,n is a realization
of ϑk,n. Assume that user k ∈ K knows his channel state
hk � (hk,n)n∈N in each slot. We consider two channel
models which are presented below.

1) Slow Fading: We assume that the system channel state
is known to the BS in each slot and adopt transmission rate
adaptation over slots. We consider channel coding within each
slot and across the N subcarriers. For the sake of exposition,
we consider an arbitrary slot with system channel state h and
any user group S ∈ S. Let PS(h) denote the component of PS
to be transmitted to user group S in the slot, also referred to as
message unit, and RS(h) denote the corresponding (transmis-
sion) rate of PS(h). Then, the average rate of message unit
PS is given by E[RS(ϑ)]. We apply the general rate splitting
scheme presented in Section II-B to transmit PS(h),S ∈ S
to all user groups in S in the slot. Specifically, for all S ∈ S,
message unit PS(h) is split into 2K−|S| sub-message units.
The rate RS(h) of PS(h) and the rates of the sub-message
unit, denoted by RS,G(h),G ∈ GS , satisfy:

RS(h) =
∑

G∈GS RS,G(h), S ∈ S, h ∈ HKN . (4)

Then, for all G ∈ G, we re-assemble sub-message units to
form transmission unit P̃G(h) with rate:

R̃G(h) =
∑

S∈SG RS,G(h), G ∈ G, h ∈ HKN . (5)

For all G ∈ G, transmission unit P̃G(h) is encoded (channel
coding) into codewords that span over the N subcarriers. Let
sG,n(h) ∈ C denote a symbol for P̃G(h) that is transmitted on
the n-th subcarrier. For all n ∈ N , let sn(h) � (sG,n(h))G∈G ,
and assume that E[sn(h)sH

n (h)] = I. We consider linear
beamforming. For all n ∈ N , let wG,n(h) ∈ CM×1 denote the
beamforming vector for transmitting P̃G(h) on subcarrier n in
the slot. Using superposition coding, the transmitted signal on
subcarrier n, denoted by xn(h) ∈ CM×1, is given by:

xn(h) =
∑

G∈G
wG,n(h)sG,n(h), n ∈ N , h ∈ HKN . (6)

The transmission power on subcarrier n ∈ N is given by∑
G∈G ‖wG,n(h)‖2

2, and the total transmission power is given
by

∑
n∈N

∑
G∈G ‖wG,n(h)‖2

2. In the slow fading scenario, the
total transmission power constraint is given by:∑

n∈N

∑
G∈G

‖wG,n(h)‖2
2 ≤ P, h ∈ HKN . (7)

Here, P denotes the transmission power budget. Define G(k) �
{G ∈ G|k ∈ G}, k ∈ K. Then, the received signal at user
k ∈ K on subcarrier n ∈ N , denoted by yk,n(h) ∈ C, is given
by:

yk,n(h) = hH
k,nxn(h) + zk,n
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= hH
k,n

∑
G∈G(k)

wG,n(h)sG,n(h)

+hH
k,n

∑
G′∈G\G(k)

wG′,n(h)sG′,n(h) + zk,n,

k ∈ K, n ∈ N ,h ∈ HKN , (8)

where the last equality is due to (6), and zk,n ∼ CN (0, σ2)
is the additive white gaussian noise (AWGN). In (8), the
first term represents the desired signal, and the second rep-
resents the interference. It is noteworthy that the main idea
of rate splitting is to make the undesired messages partially
decodable in order to reduce interference [21]. To exploit
the full potential of the general rate splitting for general
multicast, we consider joint decoding at each user.5 That is,
each user k ∈ K jointly decodes the desired transmission
units P̃G(h),G ∈ G(k). Thus, in the slow fading scenario,
the achievable rate region of the transmission units in the slot
with system channel state h is described by the following
constraints:∑
G∈X

R̃G(h)

≤ B
∑
n∈N

log2

(
1 +

∑
G∈X |hH

k,nwG,n(h)|2
σ2 +

∑
G′∈G\G(k) |hH

k,nwG′,n(h)|2
)

,

X ⊆ G(k), k ∈ K,h ∈ HKN , (9)

where R̃G(h) is given by (5).
Example 5 (Illustration of Physical Layer Design for

Two-user Case in Slow Fading): For Example 1, the rates of
message units P{1}(h), P{2}(h), and P{1,2}(h) are R{1}(h),
R{2}(h), and R{1,2}(h), respectively. The rates of transmis-
sion units P̃{1}(h), P̃{2}(h), and P̃{1,2}(h) are R̃{1}(h) =
R{1},{1}(h), R̃{2}(h) = R{2},{2}(h), and R̃{1,2}(h) =
R{1,2}(h) + R{1},{1,2}(h) + R{2},{1,2}(h), respectively. The
beamforming vectors for transmitting P̃{1}(h), P̃{2}(h), and
P̃{1,2}(h) on subcarrier n ∈ N are w{1},n(h), w{2},n(h),
and w{1,2},n(h), respectively.

Example 6 (Illustration of Physical Layer Design
for Three-user Case in Slow Fading): For Example 2,
the rates of message units P{1}(h), P{2}(h),
P{3}(h), P{1,2}(h), P{1,3}(h), and P{1,2,3}(h) are
R{1}(h), R{2}(h), R{3}(h), R{1,2}(h), R{1,3}(h), and
R{1,2,3}(h), respectively. The rates of transmission
units P̃{1}(h), P̃{2}(h), P̃{3}(h), P̃{1,2}(h), P̃{1,3}(h),
P̃{2,3}(h), and P̃{1,2,3}(h) are R̃{1}(h) = R{1},{1}(h),
R̃{2}(h) = R{2},{2}(h), R̃{3}(h) = R{3},{3}(h),
R̃{1,2}(h) = R{1,2},{1,2}(h) + R{1},{1,2}(h) + R{2},{1,2}(h),
R̃{1,3}(h) = R{1,3},{1,3}(h) + R{1},{1,3}(h) + R{3},{1,3}(h),
R̃{2,3}(h) = R{2},{2,3}(h)+R{3},{2,3}(h), and R̃{1,2,3}(h) =
R{1,2,3}(h) + R{1,3},{1,2,3}(h) + R{1,2},{1,2,3}(h) +
R{1},{1,2,3}(h) + R{2},{1,2,3}(h) + R{3},{1,2,3}(h),
respectively. The beamforming vectors for transmitting
P̃{1}(h), P̃{2}(h), P̃{3}(h), P̃{1,2}(h), P̃{1,3}(h),
P̃{2,3}(h), and P̃{1,2,3}(h) on subcarrier n ∈ N are
w{1},n(h), w{2},n(h), w{3},n(h), w{1,2},n(h), w{1,3},n(h),
w{2,3},n(h), and w{1,2,3},n(h), respectively.

5We can easily extend it to successive decoding as in [21].

2) Fast Fading: We assume that the system channel state is
unknown to the BS in each slot, but its distribution is known
to the BS. We consider channel coding over many slots and
across the N subcarriers. We apply the general rate splitting
scheme presented in Section II-B to transmit PS ,S ∈ S to all
user groups in S over many slots. For all G ∈ G, transmission
unit P̃G is encoded into codewords that span over the N sub-
carriers and many slots. Let sG,n ∈ C denote a symbol for P̃G
that is transmitted on the n-th subcarrier. Let wG,n ∈ CM×1

denote the constant beamforming vector for transmitting P̃G
on subcarrier n over these slots. Similarly, using superposition
coding, the transmitted signal on subcarrier n is given by:

xn =
∑

G∈G
wG,nsG,n, n ∈ N . (10)

The total transmission power is given by∑
n∈N

∑
G∈G ‖wG,n‖2

2. In the fast fading scenario, the
total transmission power constraint is given by:∑

n∈N

∑
G∈G

‖wG,n‖2
2 ≤ P. (11)

Then, in a slot with system channel state h, the received signal
at user k on subcarrier n, denoted by yk,n ∈ C, is given by:
yk,n

= hH
k,nxn + zk,n

= hH
k,n

∑
G∈G(k)

wG,nsG,n

+hH
k,n

∑
G′∈G\G(k)

wG′,nsG′,n + zk,n, k ∈ K, n ∈ N ,

where the last equality is due to (10). Similarly, we consider
joint decoding at each user. The achievable ergodic rate region
of the transmission units over these slots is given by:∑
G∈X

R̃G

≤ B
∑
n∈N

E

[
log2

(
1 +

∑
G∈X |ϑH

k,nwG,n|2
σ2 +

∑
G′∈G\G(k) |ϑH

k,nwG′,n|2

)]
,

X ⊆ G(k), k ∈ K, (12)

where R̃G is given by (3).

Example 7 (Illustration of Physical Layer Design for
Two-user Case in Fast Fading): For Example 1, the rates of
message units P{1}, P{2}, and P{1,2} are R{1}, R{2}, and
R{1,2}, respectively. The rates of transmission units P̃{1},
P̃{2}, and P̃{1,2} are R̃{1} = R{1},{1}, R̃{2} = R{2},{2},
and R̃{1,2} = R{1,2} + R{1},{1,2} + R{2},{1,2}, respectively.
The beamforming vectors for transmitting P̃{1}, P̃{2}, and
P̃{1,2} on subcarrier n ∈ N are w{1},n, w{2},n, and w{1,2},n,
respectively.

Example 8 (Illustration of Physical Layer Design for
Three-user Case in Fast Fading): For Example 2, the rates
of message units P{1}, P{2}, P{3}, P{1,2}, P{1,3}, and
P{1,2,3} are R{1}, R{2}, R{3}, R{1,2}, R{1,3}, and R{1,2,3},
respectively. The rates of transmission units P̃{1}, P̃{2}, P̃{3},
P̃{1,2}, P̃{1,3}, P̃{2,3}, and P̃{1,2,3} are R̃{1} = R{1},{1},
R̃{2} = R{2},{2}, R̃{3} = R{3},{3}, R̃{1,2} = R{1,2},{1,2} +
R{1},{1,2} + R{2},{1,2}, R̃{1,3} = R{1,3},{1,3} + R{1},{1,3} +
R{3},{1,3}, R̃{2,3} = R{2},{2,3} + R{3},{2,3}, and R̃{1,2,3} =
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Fig. 3. Illustration of the proposed solution framework for the slow
fading scenario. “determin.” and “stoch.” are short for “deterministic” and
“stochastic”, respectively. “trans.”, “Equiv.”, “Approx.”, and “Prob.” are
short for “transformation”, “Equivalent”, “Approximation”, and “Problem”,
respectively.

R{1,2,3} + R{1,3},{1,2,3} + R{1,2},{1,2,3} + R{1},{1,2,3} +
R{2},{1,2,3}+R{3},{1,2,3}, respectively. The beamforming vec-
tors for transmitting P̃{1}, P̃{2}, P̃{3}, P̃{1,2}, P̃{1,3}, P̃{2,3},
and P̃{1,2,3} on subcarrier n ∈ N are w{1},n, w{2},n, w{3},n,
w{1,2},n, w{1,3},n, w{2,3},n, and w{1,2,3},n, respectively.

III. AVERAGE RATE MAXIMIZATION IN SLOW

FADING SCENARIO

This section considers the slow fading scenario and max-
imizes the weighted sum average rate under the achievable
rate constraints and total transmission power constraints. The
proposed solution framework for the slow fading scenario is
illustrated in Fig. 3.

A. Optimization Problem Formulation

We would like to optimize the transmission beamforming
vectors w(h) � (wG,n(h))G∈G,n∈N ,h ∈ HKN and rates
of the sub-message units R(h) � (RS,G(h))S∈S,G∈G,h ∈
HKN to maximize the weighted sum average rate,6∑

S∈S αSE [RS(ϑ)], where the coefficient αS ≥ 0 denotes
the weight for message unit PS , subject to the total trans-
mission power constraints in (7) and the achievable rate
constraints in (9). Therefore, we formulate the following
optimization problem.

Problem 1 (Weighted Sum Average Rate Maximization):

U (slow)�

� max
(w(h))

h∈HKN ,(R(h))
h∈HKN �0

∑
S∈S

αSE [RS(ϑ)]

s.t. (7), (9),

where RS(·) is given by (4).
As the objective function and constraints of Problem 1 are

seperable with h ∈ HKN , Problem 1 is seperable and can
be readily solved by solving the following problems for all
h ∈ HKN in parallel.

Problem 2 (Weighted Sum Rate Maximization for h):

max
w(h),R(h)�0

∑
S∈S

αSRS(h)

s.t.
∑
n∈N

∑
G∈G

‖wG,n(h)‖2
2 ≤ P, (13)∑

G∈X
R̃G(h)

≤ B
∑
n∈N

log2

(
1 +

∑
G∈X |hH

k,nwG,n(h)|2
σ2 +

∑
G′∈G\G(k) |hH

k,nwG′ ,n(h)|2
)

,

X ⊆ G(k), k ∈ K. (14)

6The proposed problem formulation and solution method can be readily
extended to maximize the sum average rate and worst-case average rate as
in [21].

Remark 3 (Connection with Rate Splitting for Unicast and
Multicast): (i) When general multicast degrades to unicast,
Problem 2 reduces to the weighted sum rate maximization
problem for general rate splitting for unicast in [21]. (ii) When
general multicast degrades to unicast with a common message,
Problem 2 can be viewed as a generalization of the weighted
sum rate maximization for unicast with a common message
in [22]. (iii) When general multicast degrades to single-group
multicast, Problem 2 reduces to the rate maximization problem
for single-group multicast in [27]. (iv) When general multicast
degrades to multi-group multicast, Problem 2 can be viewed
as a generalization of the weighted sum rate maximization for
multi-group multicast in [24].

Therefore, we can focus on solving Problem 2 for all h.
Note that the objective function is linear, the constraint in (13)
is convex, and the constraints in (14) are nonconvex. Thus,
Problem 2 is nonconvex.7

B. KKT Point

In this subsection, we propose an iterative algo-
rithm to obtain a KKT point of Problem 2 using
CCCP. First, we transform Problem 2 into the fol-
lowing equivalent problem by introducing auxiliary vari-
ables e(h) � (ek,n,X (h))X⊆G(k),k∈K,n∈N and u(h) �
(uk,n,X (h))X⊆G(k),k∈K,n∈N and extra constraints (15)–(17),
shown at the bottom of the next page.

Problem 3 (Equivalent DC Problem of Problem 2):

max
w(h),R(h)�0,e(h),u(h)

∑
S∈S

αS
∑

G∈GS

RS,G(h)

s.t. (13), (15), (16), (17).

Let (w�(h),R�(h), e�(h),u�(h)) denote an optimal solution
of Problem 3.

Lemma 1 (Equivalence Between Problem 2 and
Problem 3): (w�(h),R�(h), e�(h),u�(h)) satisfies
2e�

k,n,X (h)/B = u�
k,n,X (h), X ⊆ G(k), k ∈ K, n ∈ N .

Furthermore, Problem 2 and Problem 3 are equivalent.

Proof 1: First, by introducing auxiliary variables e(h) and
u(h) and extra constraints:

2ek,n,X (h)/B = uk,n,X (h), X ⊆ G(k), k ∈ K, n ∈ N , (19)

we can equivalently transform Problem 2 into the following
problem:

max
w(h),R(h)�0,e(h),u(h)

∑
S∈S

αS
∑

G∈GS

RS,G(h)

s.t. (13), (15), (17), (19)

Let (w‡(h),R‡(h), e‡(h),u‡(h)) denote an optimal solution.
It is obvious that (w‡(h),R‡(h)) is an optimal solution
of Problem 2. Next, we transform the above problem to
Problem 3 by relaxing the constrains in (19) to the con-
straints in (16). By contradiction and the monotonicity of the
objective function with respect to (w.r.t.) R in Problem 3,

7There are generally no effective methods for solving a nonconvex problem
optimally. The goal of solving a nonconvex problem is usually to design an
iterative algorithm to obtain a stationary point or a KKT point (which satisfies
necessary conditions for optimality if strong duality holds).
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we can show that the constraints in (16) are active at the
optimal solution. Thus, (w‡(h),R‡(h), e‡(h),u‡(h)) is an
optimal solution of Problem 3. Therefore, we can show
Lemma 1. �

Based on Lemma 1, solving Problem 2 is equivalent to
solving Problem 3. Problem 3 is a difference of convex func-
tions (DC) programming (one type of nonconvex problems),
and a KKT point can be obtained by CCCP [21].8 The main
idea of CCCP is to solve a sequence of successively refined
approximate convex problems, each of which is obtained by
linearizing the concave part and preserving the remaining
convex part in the DC problem. Specifically, at the i-th itera-
tion, the approximate convex problem of Problem 3 is given
as follows. Let (w(i)(h),R(i)(h), e(i)(h),u(i)(h)) denote an
optimal solution of the following problem.

Problem 4 (Approximation of Problem 3 at Iteration i):

max
w(h),R(h)�0,e(h),u(h)

∑
S∈S

αS
∑

G∈GS

RS,G(h)

s.t. (13), (15), (16),

Lk,n,X (wn(h), uk,n,X (h);w(i−1)
n (h), u(i−1)

k,n,X (h)) ≤ 0,

X ⊆ G(k), k ∈ K, n ∈ N , (20)

where w(i−1)
n (h) � (w(i−1)

G,n (h))G∈X∪(G\G(k)),
wn(h) � (wG,n(h))G∈X∪(G\G(k)), and

Lk,n,X (wn(h), uk,n,X (h);w(i−1)
n (h), u(i−1)

k,n,X (h)) is given by
(18), shown at the bottom of the page.

Problem 4 is convex and can be solved efficiently using
standard convex optimization methods [29]. Problem 4 has
MN |G| +

∑
S∈S 2K−|S| + 2N

∑
k∈K(2|G

(k)| − 1) variables

and 1+(2N+1)
∑

k∈K(2|G
(k)|−1) constraints. Thus, when an

8CCCP can exploit the partial convexity and usually converges faster to a
KKT point than conventional gradient methods.

interior point method is applied, the computational complexity
for solving Problem 4 is O(K3.521.75×2K

) as K → ∞
[29]. The details of CCCP for obtaining a KKT point of
Problem 3 are summarized in Algorithm 1.9 As the number
of iterations of Algorithm 1 does not scale with the problem
size [30], the computational complexity for Algorithm 1 is
the same as that for solving Problem 4, i.e., O(K3.521.75×2K

)
as K → ∞.

Theorem 1 (Convergence of Algorithm 1): As i → ∞,(
w(i)(h),R(i)(h), e(i)(h),u(i)(h)

)
obtained by Algorithm 1

converges to a KKT point of Problem 3 [28].
Proof 2: The constraints in (13), (15), (16) are

convex, and the constraint function in (17) can
be regarded as a difference between two convex
functions, i.e.,

∑
G′∈G\G(k) |hH

k,nwG′,n(h)|2 + σ2 and
(
∑

G∈X |hH
k,nwG,n(h)|2 +

∑
G′∈G\G(k) |hH

k,nwG′,n(h)|2 +
σ2)/uk,n,X (h). Therefore, Problem 3 is a DC
programming. Linearizing (

∑
G∈X |hH

k,nwG,n(h)|2 +∑
G′∈G\G(k) |hH

k,nwG′,n(h)|2 + σ2)/uk,n,X (h)

at (w(i−1)
n (h), u(i−1)

k,n,X (h)) and preserv-
ing

∑
G′∈G\G(k) |hH

k,nwG′,n(h)|2 + σ2 give

Lk,n,X (wn(h), uk,n,X (h);w(i−1)
n (h), u(i−1)

k,n,X (h)) in (18).
Thus, Algorithm 1 implements CCCP. It has been validated
in [28] that solving DC programming through CCCP always
returns a KKT point. Therefore, we can show Theorem 1. �

This paper focuses mainly on exploiting the full potential of
general rate splitting for general multicast. The computational
complexity of Algorithm 1 can be formidable with a large K .
We can use successive decoding to reduce the computational

9In practice, we can run each of Algorithms 1-4 multiple times with
randomly selected feasible initial points to obtain multiple KKT points and
choose the KKT point with the best objective value.

∑
G∈X

∑
S∈SG

RS,G(h) =
∑
n∈N

ek,n,X (h), X ⊆ G(k), k ∈ K, (15)

2ek,n,X (h)/B ≤ uk,n,X (h), X ⊆ G(k), k ∈ K, n ∈ N , (16)

∑
G′∈G\G(k)

|hH
k,nwG′,n(h)|2 + σ2 −

∑
G∈X

|hH
k,nwG,n(h)|2 +

∑
G′∈G\G(k)

|hH
k,nwG′,n(h)|2 + σ2

uk,n,X (h)
≤ 0,

X ⊆ G(k), k ∈ K, n ∈ N . (17)

Lk,n,X (wn(h), uk,n,X (h);w(i−1)
n (h), u(i−1)

k,n,X (h))

�
∑

G′∈G\G(k)

|hH
k,nwG′,n(h)|2 + σ2

+

⎛⎝∑
G∈X

|hH
k,nw(i−1)

G,n (h)|2 +
∑

G′∈G\G(k)

|hH
k,nw(i−1)

G′,n (h)|2 + σ2

⎞⎠uk,n,X (h)
/(

u
(i−1)
k,n,X (h)

)2

−
⎛⎝2�

⎧⎨⎩∑
G∈X

w(i−1)H
G,n (h)hk,nhH

k,nwG,n(h) +
∑

G′∈G\G(k)

w(i−1)H
G′,n (h)hk,nhH

k,nwG′,n(h)

⎫⎬⎭ + 2σ2

⎞⎠/
u

(i−1)
k,n,X (h),

X ⊆ G(k), k ∈ K, n ∈ N . (18)
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Algorithm 1 Obtaining a KKT Point of Problem 3
1: Initialization: Choose any feasible point of Problem 3

(w(0)(h), R(0)(h), e(0)(h), u(0)(h)) and set i = 0.
2: repeat
3: Obtain an optimal solution (w(i)(h), R(i)(h), e(i)(h), u(i)(h)) of

Problem 4 with an interior point method.
4: Set i = i + 1.
5: until the convergence criterion ‖(w(i)(h), R(i)(h), e(i)(h), u(i)(h))−

(w(i−1)(h), R(i−1)(h), e(i−1)(h), u(i−1)(h))‖2 ≤ ε is met.

Fig. 4. Illustration of the proposed solution framework for the fast fading
scenario. “Cor.” and “LC” are short for “Correlated” and “Low Complexity”,
respectively. The interpretations of the remaining short forms can be found
in Fig 3.

complexity to O(K1.5|S|1.522K) as in [21].10 We can also
apply rate splitting with a reduced number of layers together
with successive decoding to further reduce the computational
complexity to O(K1.5|S|1.5(|G lb|2 + |Glb||S|K + |S|2K2))
as in [21], for some G lb satisfying S ⊆ G lb ⊆ G. Note that
|Glb| represents the reduced number of layers and satisfies
|S| ≤ |Glb| ≤ 2K−1.11 Low-complexity optimization methods
are beyond the scope of this paper.

IV. ERGODIC RATE MAXIMIZATION IN FAST

FADING SCENARIO

This section considers the fast fading scenario and maxi-
mizes the weighted sum ergodic rate under the total transmis-
sion power constraint and achievable ergodic rate constraints.
The proposed solution framework for the fast fading scenario
is illustrated in Fig. 4. It is noteworthy that in the fast
fading scenario when general multicast degrades to unicast, the
proposed solutions based on general rate splitting outperform
the one based on 1-layer rate splitting in [18] due to the fact
that our solution can exploit the full potential of rate splitting
and obtain a KKT point.

A. Optimization Problem Formulation

We would like to optimize the transmission beamforming
vectors w � (wG,n)G∈G,n∈N and rates of sub-message units
R � (RS,G)S∈S,G∈G to maximize the weighted sum ergodic
rate,

∑
S∈S αSRS , subject to the total transmission power

constraint in (11) and the achievable ergodic rate constraints
in (12). Therefore, we formulate the following problem.

Problem 5 (Weighted Sum Ergodic Rate Maximization):

U (fast)� � max
w,R�0

∑
S∈S

αSRS

s.t. (11), (12),

where RS is given by (2).

10Note that |S| may not scale with K , and how |S| scales with K relies
on the user requests. In the case of |S| = O(1), the reduced computational
complexity is O(K1.522K ), as K → ∞.

11In the case of |S| = O(1) and |Glb| = O(1), the reduced computational
complexity is O(N3.5K3.5) as K → ∞.

Remark 4 (Connection with Rate Splitting for Unicast
and Multicast): When general multicast degrades to unicast
and general rate splitting reduces to 1-layer rate splitting,
Problem 5 can reduce to the weighted sum ergodic rate
maximization problem for unicast in [18]. Besides, Problem 5
can be regards as a generalization the weighted sum ergodic
rate maximization problem for other service types.

Note that the objective function is linear, the constraint in
(11) is convex, and the constraints in (12) involve expectations
and are nonconvex. Thus, Problem 5 is a more challenging
nonconvex stochastic problem than the one in the slow fading
scenario as it is not separable and has stochastic constraints.

B. KKT Point

In this subsection, we propose a stochastic iterative algo-
rithm to obtain a KKT point of Problem 5 using SSCA together
with the exact penalty method [32]. First, we equivalently
transform Problem 5 to a stochastic optimization problem
whose objective function is the weighted sum of the original
objective function and the penalty for violating the nonconvex
constraints with expectations in (12).

Problem 6 (Equivalent Problem of Problem 5):

max
w,R�0,s�0

∑
S∈S

αS
∑
G∈GS

RS,G − ρ
∑
k∈K

∑
X⊆G(k)

sX ,k

s.t. (11),
∑

G∈X
R̃G

−B
∑

n∈N E

[
log2

(
1+

∑
G∈X |ϑH

k,nwG,n|2
σ2 +

∑
G′∈G\G(k) |ϑH

k,nwG′,n|2

)]
≤ sX ,k, X ⊆ G(k), k ∈ K, (22)

where s � (sX ,k)X⊆G(k),k∈K are slack variables, and ρ >
0 is a penalty parameter that trades off the original objective
function and the slack penalty term.

Next, at iteration i, we choose:

F
(i)

X ,k,n(w) = (1 − ω(i))F
(i−1)

X ,k,n(w)

+ ω(i)f̂X ,k,n(w;w(i−1);h(i)), X ⊆ G(k),

k ∈ K, n ∈ N ,

with F
(0)

X ,k,n(w) = 0 as a convex surrogate func-

tion of E

[
log2

(
1 +

�
G∈X |ϑH

k,nwG,n|2
σ2+
�

G′∈G\G(k) |ϑH
k,nwG′,n|2

)]
in (22),

where h(i) is the realization of the random system
channel state at iteration i, ω(i) is a stepsize satisfy-
ing ω(i) > 0, limt→∞ ω(i) = 0,

∑∞
i=1 ω(i) = ∞,

and f̂X ,k,n(w;w(i−1), ;h(i)) is a convex approximation

of E

[
log2

(
1 +

�
G∈X |ϑH

k,nwG,n|2
σ2+
�

G′∈G\G(k) |ϑH
k,nwG′,n|2

)]
around w(i−1)

which is given by (21), shown at the bottom of the next
page. In (21), τX ,k,n > 0 can be any constant, and the term
τX ,k,n‖w−w(i−1)‖2 is used to ensure strong convexity. Then,
the approximation convex problem at iteration i is given as
follows.
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Problem 7 (Approximation of Problem 5 at i-th
Iteration):

max
w,R�0,s�0

∑
S∈S

αS
∑

G∈GS

RS,G + ρ
∑
k∈K

∑
X⊆G(k)

sX ,k

s.t. (11),∑
G∈X

R̃G − B
∑

n∈N F
(i)

X ,k,n(w) ≤ sX ,k,

X ⊆ G(k), k ∈ K. (23)

Let (w(i),R(i), s(i)) denote an optimal solution of Problem 7.
It is noted that Problem 7 is a convex optimization problem

which is always feasible (as sX ,k can be arbitrarily large). We
can obtain an optimal solution of Problem 7, (w(i),R(i), s(i)),
with the convex optimization techniques [29]. Given w(i),
we then update w(i) according to:

w(i) = (1 − γ(i))w(i−1) + γ(i)w(i), (24)

where γ(i) is a step size satisfying:

γ(i) > 0, lim
t→∞ γ(i) = 0,

∞∑
i=1

γ(i) = ∞,

∞∑
t=1

(
γ(i)

)2

< ∞, lim
t→∞

γ(i)

ω(i)
= 0.

The detailed procedure is summarized in Algorithm 2. Note
that Problem 7 has MN |G|+∑

S∈S 2K−|S|+
∑

k∈K(2|G
(k)|−

1) variables and 1+
∑

k∈K(2|G
(k)|−1) constraints. Thus, when

an interior point method is applied, the computational com-
plexity for solving Problem 7 is O(K3.521.75×2K

) as K →
∞ [29]. Note that the number of iterations of Algorithm 2, T ,
is fixed, the computational complexity for Algorithm 2 is the
same as that for solving Problem 7, i.e., O(K3.521.75×2K

)
as K → ∞. As discussed in Section III-B, we can apply
rate splitting with a reduced number of layers together with
successive decoding to reduce the computational complexity
to O(K1.5|S|1.5(|Glb|2 + |G lb||S|K + |S|2K2)) as in [21].

Theorem 2 (Convergence of Algorithm 2):
{(w(i),R(i), s(i))} generated by Algorithm 2 has a limit
point, denote by (w†,R†, s†), and the following statements
hold. (i) (w†,R†, s†) is a KKT point of Problem 6; (ii) If
s† = 0, then (w†,R†) is a KKT point of Problem 5.

Algorithm 2 SSCA for Obtaining a KKT Point of Problem 6

1: Initialization: Choose any feasible point w(0) of Problem 7
as the initial point and a sufficiently large ρ > 0.

2: for i = 0, 1, . . . , T do
3: Obtain an optimal solution (w(i),R(i), s(i)) of Problem 7

with an interior point method, and update w(i) according
to (24).

4: end for
5: Output: (w(T ),R(T ), s(T ))

Proof 3: Problem 5 and F
(i)

X ,k,n(w) satisfy Assumption
1 and Assumption 2 in [32], respectively. Additionally, Algo-
rithm 2 implements the stochastic iterative algorithm proposed
in [32]. Therefore, by Theorem 2 of [32], we can show that
statement (i) and statement (ii) hold. �

We can run Algorithm 2 multiple times, each with a random
initial point w(0) and a sufficiently large ρ > 0, until a KKT
point (w†,R†, s†) of Problem 6 with s† = 0, i.e., a KKT
point (w†,R†) of Problem 5, is obtained.

C. Low-Complexity Solutions

It is noteworthy that a stochastic iterative algorithm
usually converges slowly and has low computation effi-
ciency compared with its deterministic counterpart. Thus,
in this subsection, we propose two low-complexity itera-
tive algorithms to obtain feasible points of Problem 5 with
promising performance for two cases of channel distrib-
utions using approximation and CCCP. By approximating

E

[
log2

(
1 +

�
G∈X |ϑH

k,nwG,n|2
σ2+
�

G′∈G\G(k) |ϑH
k,nwG′,n|2

)]
in (12) with [31]:

log2

⎛⎝1 +

∑
G∈X E

[
|ϑH

k,nwG,n|2
]

σ2 +
∑

G′∈G\G(k) E

[
|ϑH

k,nwG′,n|2
]
⎞⎠

= log2

(
1 +

∑
G∈X wH

G,nQk,nwG,n

σ2 +
∑

G′∈G\G(k) wH
G′,nQk,nwG′,n

)
,

where Qk,n � E

[
ϑk,nϑH

k,n

]
� 0 represents the channel

covariance matrix for user k and subcarrier n, we approximate
the stochastic nonconvex problem in Problem 5 with the
following deterministic nonconvex problem.

f̂X ,k,n(w;w(i−1), ;h(i))

� log2

(
1 +

∑
G∈X |h(i)H

k,n w(i−1)
G,n |2

σ2 +
∑

G′∈G\G(k) |h(i)H
k,n w(i−1)

G′,n |2

)

+
2�

{∑
G′∈G\G(k) wH(i−1)

G′,n h(i)
k,nh(i)H

k,n (wG′,n − w(i−1)
G′,n ) +

∑
G∈X wH(i−1)

G,n h(i)
k,nh(i)H

k,n (wG,n − w(i−1)
G,n )

}
ln 2(σ2 +

∑
G′∈G\G(k) |h(i)H

k,n w(i−1)
G′,n |2 +

∑
G∈X |h(i)H

k,n w(i−1)
G,n |2)

−
2�

{∑
G′∈G\G(k) wH(i−1)

G′,n h(i)
k,nh(i)H

k,n (wG′,n − w(i−1)
G′,n )

}
ln 2(σ2 +

∑
G′∈G\G(k) |h(i)H

k,n w(i−1)
G′,n |2)

+ τX ,k,n‖w − w(i−1)‖2, X ⊆ G(k), k ∈ K, n ∈ N . (21)
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Problem 8 (Approximate Problem of Problem 5 for Obtain-
ing w†):

max
w,R�0

∑
S∈S

αS
∑

G∈GS

RS,G

s.t. (11),
∑
G∈X

R̃G

≤ B
∑
n∈N

log2

(
1 +

∑
G∈X wH

G,nQk,nwG,n

σ2 +
∑

G′∈G\G(k) wH
G′,nQk,nwG′,n

)
,

X ⊆ G(k), k ∈ K. (25)

Let w† denote the beamforming vectors corresponding to a
KKT point of Problem 8 (which may not be feasible for Prob-
lem 5 because of the adopted approximation). Then, construct
the following deterministic linear programming parametrized
by w†.

Problem 9 (Approximate Problem of Problem 5 for Obtain-
ing R†):

max
R�0

∑
S∈S

αS
∑

G∈GS

RS,G

s.t.
∑
G∈X

R̃G

≤B
∑
n∈N

E

[
log2

(
1 +

∑
G∈X |ϑH

k,nw†
G,n|2

σ2 +
∑

G′∈G\G(k) |ϑH
k,nw†

G′,n|2

)]
,

X ⊆ G(k), k ∈ K. (26)

Let R† denote an optimal solution of Problem 9.
Lemma 2 (Feasibility of (w†,R†) for Problem 5): (w†,R†)

is a feasible point of Problem 5.
Proof 4: w† satisfies the constraint in (11). Besides,

(w†,R†) satisfies the constraints in (12). Thus, (w†,R†) is a
feasible point of Problem 5. �

As the approximation error is usually small,
(w†,R†) can be viewed as an approximate solution
of Problem 5. Based on the numerical calculation of

E

[
log2

(
1 +

�
G∈X |ϑH

k,nw†
G,n|2

σ2+
�

G′∈G\G(k) |ϑH
k,nw†

G′,n
|2

)]
, X ⊆ G(k), k ∈

K, we can easily solve Problem 9 using standard optimization
methods. Problem 9 has

∑
S∈S 2K−|S| variables and∑

k∈K 2|G
(k)| − K constraints. Thus, the computational

complexity for solving Problem 9 using an interior point
method is O(K1.520.75×2K

). Moreover, it is expected that
the deterministic nonconvex problem in Problem 8 can
be more effectively solved than the stochastic nonconvex
problem in Problem 5. In what follows, we concentrate on
solving Problem 8 in two cases of channel distributions,
namely spatially correlated channel (Qk,n has non-zero
non-diagonal elements, for all k ∈ K, n ∈ N ) and
independent and identically distributed (i.i.d.) channel (Qk,n

is a diagonal matrix with identical diagonal elements, for all
k ∈ K, n ∈ N ).

1) Spatially Correlated Channel: In this part, we consider
the case of spatially correlated channel, i.e., Qk,n has non-zero
non-diagonal elements, for all k ∈ K, n ∈ N . First, using the
same method as in Section III, Problem 8 can be transformed

into the following DC programming by introducing auxiliary
variables and extra constraints.

Problem 10 (Equivalent DC Problem of Problem 8):

max
w,R�0,e,u

∑
S∈S

αS
∑
G∈GS

RS,G

s.t. (11), (29),∑
G∈X

∑
S∈S,S⊆G

RS,G ≤
∑
n∈N

ek,n,X , X ⊆ G(k), k ∈ K, (27)

2
ek,n,X

B ≤ uk,n,X , X ⊆ G(k), k ∈ K, n ∈ N , (28)

where e � (ek,n,X )X⊆G(k),k∈K,n∈N , u �
(uk,n,X )X⊆G(k),k∈K,n∈N (with a slight abuse of notation),
and (29) is shown at the bottom of the next page. Let
(w�,R�, e�,u�) denote an optimal solution of Problem 10.

Lemma 3 (Equivalence Between Problem 8 and Prob-

lem 10): (w�,R�, e�,u�) satisfies 2
e�

k,n,X
B = u�

k,n,X , X ⊆
G(k), k ∈ K, n ∈ N . Furthermore, Problem 8 and Problem 10
are equivalent.

Proof 5: The proof is similar to the one for Lemma 1 and
is omitted here. �

Note that e and u are auxiliary variables, and (27),
(28), and (29), shown at the bottom of the next page,
are extra constraints. Analogously, the approximation convex
problem of Problem 10 at iteration i is given below. Let
(w(i),R(i), e(i),u(i)) denote an optimal solution of the fol-
lowing problem.

Problem 11 (Approximation of Problem 10 at Iteration i):

maxw,R�0,e,u

∑
S∈S

αS
∑

G∈GS RS,G

s.t. (11), (27), (28),

Qk,n,X (wn, uk,n,X ;w(i−1)
n , u

(i−1)
k,n,X ) ≤ 0, X ⊆ G(k),

k ∈ K, n ∈ N , (31)

where wn � (wG,n)G∈X∪(G\G(k)), w(i−1)
n � (w(i−1)

G,n )

G∈X∪(G\G(k)), and Qk,n,X (wn, uk,n,X ;w(i−1)
n , u

(i−1)
k,n,X ) is

given by (30), shown at the bottom of the next page.
Similarly, Problem 11 is a convex problem and can be

solved using standard convex optimization methods. Prob-
lem 11 has MN |G|+∑

S∈S 2K−|S| +2N
∑

k∈K(2|G
(k)|−1)

variables and 1+(2N+1)
∑

k∈K(2|G
(k)|−1) constraints. Thus,

when an interior point method is applied, the computational
complexity for solving Problem 11 is O(K3.521.75×2K

) as
K → ∞ [29]. The details for obtaining a feasible point of
Problem 5 are summarized in Algorithm 3. Similarly, as the
number of iterations of Algorithm 1 does not scale with the
problem size [30], we can conclude that the computational
complexity of Steps 2-5 in Algorithm 3 is O(K3.521.75×2K

)
as K → ∞. Recall that the computational complexity for
solving Problem 9 is O(K1.520.75×2K

). Thus, the computa-
tional complexity of Algorithm 3 is O(K3.521.75×2K

) as K →
∞. Similarly, we can reduce the computational complexity
to O(K1.5|S|1.5(|G lb|2 + |G lb||S|K + |S|2K2)) as in [21].
Analogously, we have the following convergence result.

Theorem 3 (Convergence of Algorithm 3): As i → ∞,
(w(i),R(i), e(i),u(i)) obtained by Steps 1-5 of Algorithm 3
converges to a KKT point of Problem 10 [28].
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Algorithm 3 Obtaining a Feasible Point of Problem 5
1: Initialization: Choose any feasible point

(w(0),R(0), e(0),u(0)), and set i = 0.
2: repeat
3: Obtain an optimal solution (w(i),R(i), e(i),u(i)) of Prob-

lem 11 with an interior point method.
4: Set i = i + 1.
5: until the convergence criterion ‖(w(i),R(i), e(i),u(i)) −

(w(i−1),R(i−1), e(i−1),u(i−1))‖2 ≤ ε is met.
6: Set w† = w(i).

7: Calculate E

[
log2

(
1+

�
G∈X |ϑH

k,nw†
G,n|2

σ2+
�

G′∈G\G(k) |ϑH
k,nw†

G′,n
|2

)]
, X ⊆

G(k), k ∈ K numerically and obtain an optimal solution
R† of Problem 9 using standard optimization methods.

Proof 6: The constraints in (11), (27), (28) are
convex, and the constraint function in (29) can
be regarded as a difference between two convex
functions, i.e.,

∑
G′∈G\G(k) wH

G′,nQk,nwG′,n + σ2 and
(
∑

G∈X wH
G,nQk,nwG,n +

∑
G′∈G\G(k) wH

G′,nQk,nwG′,n +
σ2)/uk,n,X . Therefore, Problem 10 is a
DC programming. Similarly, linearizing
(
∑

G∈X wH
G,nQk,nwG,n +

∑
G′∈G\G(k) wH

G′,nQk,nwG′,n +
σ2)/uk,n,X at (w(i−1)

n , u
(i−1)
k,n,X ) and preserv-

ing
∑

G′∈G\G(k) wH
G′,nQk,nwG′,n + σ2 give

Qk,n,X (wn, uk,n,X ;w(i−1)
n , u

(i−1)
k,n,X ) in (30). Thus, Steps 1-5

of Algorithm 3 implements CCCP. It has been validated
in [28] that solving DC programming through CCCP always
returns a KKT point. Therefore, we can show Theorem 3. �

2) I.I.D. Channel: In this part, we consider i.i.d. channel,
i.e., Qk,n = λIM×M is a diagonal matrix with identical
diagonal elements, for all k ∈ K, n ∈ N . By changing
variables, i.e., letting tG,n � ‖wG,n‖2

2 ≥ 0, Problem 8 can
be equivalently converted into the following problem.

Problem 12 (Equivalent Problem of Problem 8 for i.i.d.
Channel):

max
t�0,R�0

∑
S∈S

αS
∑
G∈GS

RS,G

s.t.
∑
n∈N

∑
G∈G

tG,n ≤ P, (32)

∑
G∈X

R̃G ≤ B
∑
n∈N

log2

(
1 +

λ
∑

G∈X tG,n

σ2 + λ
∑

G′∈G\G(k) tG′,n

)
,

X ⊆ G(k), k ∈ K, (33)

where t � (tG,n)G∈G,n∈N . Let (t�,R�) denote an optimal
solution of Problem 12.

Note that Problem 12 for i.i.d. channel is irrelevant to M ,
as we intend to optimize the time-invariant beamforming vec-
tors according to channel statistics in the fast fading scenario.
Problem 10 has MN |G| complex optimization variables for
beamforming (i.e., w) whereas Problem 12 has N |G| real
optimization variables for beamforming (i.e., t). Thus, it is
expected that Problem 12 has lower computational complexity
than Problem 10. Besides, we have the following result.

Lemma 4 (Equivalence Between Problem 8 and Prob-
lem 12): Any (w�,R�) with ‖w�

G,n‖2
2 = t�G,n is an optimal

solution of Problem 8.
Proof 7: When Qk,n = λI, we can transform

log2

(
1 +

�
G∈X wH

G,nQk,nwG,n

σ2+
�

G′∈G\G(k) wH
G′,n

Qk,nwG′,n

)
to

log2

(
1 + λ

�
G∈X tG,n

σ2+λ
�

G′∈G\G(k) tG′,n

)
by letting tG,n �

‖wG,n‖2
2 ≥ 0. Thus, the constraints in (11) and (25) can

be equivalently converted to the constraints in (32) and (33),
respectively. Thus, Problem 12 is equal to Problem 8. �

Problem 12 is a DC programming, and we can obtain
a KKT point using CCCP. Specifically, the approximation
convex problem at iteration i is given below.

Problem 13 (Approximation of Problem 12 at Iteration i):

max
t�0,R�0

∑
S∈S

αS
∑
G∈GS

RS,G

s.t. (32),∑
G∈X

R̃G − B
∑
n∈N

log2

(
σ2 +

∑
G′∈G\G(k)∪X

tG′,n

)
+ B

∑
n∈N

log2

(
σ2 +

∑
G′∈G\G(k)

t
(i−1)
G′,n

)

+
B

ln 2

∑
n∈N

∑
G′∈G\G(k)(tG′,n − t

(i−1)
G′,n )

(σ2 +
∑

G′∈G\G(k) t
(i−1)
G′,n )

≤ 0,

X ⊆ G(k), k ∈ K. (34)

∑
G′∈G\G(k)

wH
G′,nQk,nwG′,n + σ2 −

∑
G∈X wH

G,nQk,nwG,n +
∑

G′∈G\G(k) wH
G′,nQk,nwG′,n + σ2

uk,n,X
≤ 0, X ⊆ G(k), k ∈ K, n ∈ N , (29)

Qk,n,X (wn, uk,n,X ;w(i−1)
n , u

(i−1)
k,n,X )

�
∑

G′∈G\G(k)

wH
G′,nQk,nwG′,n + σ2

+
(∑

G∈X
w(i−1)H

G,n Qk,nw(i−1)
G,n +

∑
G′∈G\G(k)

w(i−1)H
G′,n Qk,nw(i−1)

G′,n + σ2

)
uk,n,X

/(
u

(i−1)
k,n,X

)2

−
(

2�
{∑

G∈X
w(i−1)H

G,n Qk,nwG,n +
∑

G′∈G\G(k)
w(i−1)H

G′,n Qk,nwG′,n + σ2

}
+ 2σ2

)/
u

(i−1)
k,n,X ,

X ⊆ G(k), k ∈ K, n ∈ N . (30)
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Algorithm 4 Obtaining a Feasible Point of Problem 5
1: Initialization: Choose any feasible point (t(0),R(0)), and set i = 0.
2: repeat
3: Obtain an optimal solution (t(i),R(i)) of Problem 13 with an interior

point method.
4: Set i = i + 1.
5: until the convergence criterion ‖(t(i), R(i)) − (t(i−1),R(i−1))‖2 ≤ ε

is met.
6: Set w† = w(i), where ‖w(i)

G,n‖2
2 = t

(i)
G,n.

7: Calculate E

�
log2

�
1 +

�
G∈X |ϑH

k,nw
†
G,n

|2

σ2+
�

G′∈G\G(k) |ϑH
k,n

w
†
G′,n

|2

��
, X ⊆

G(k), k ∈ K numerically and obtain an optimal solution R† of
Problem 9 using standard optimization methods.

Let (t(i),R(i)) denote an optimal solution of Problem 13,
where t(i) � (t(i)G,n)G∈X∪(G\G(k)),n∈N .

Problem 13 is a convex problem and can be solved using
standard convex optimization methods. Note that Problem 13
has N |G|+∑

S∈S 2K−|S| variables and 1+
∑

k∈K(2|G
(k)|−1)

constraints. Thus, when an interior point method is applied,
the computational complexity for solving Problem 13 is
O(K1.520.75×2K+4K) as K → ∞ [29]. The details for
obtaining a feasible point of Problem 5 are summarized
in Algorithm 4. Similarly, the computational complexity of
Steps 2-5 in Algorithm 4 is O(K1.520.75×2K+4K) as K →
∞. Noting that the computational complexity for solving
Problem 9 is O(K1.520.75×2K

), the computational complex-
ity of Algorithm 4 is O(K1.520.75×2K+4K) as K → ∞.
Similarly, we can reduce the computational complexity to
O(K1.5|S|1.5(|G lb|2 + |G lb||S| + |S|2)) as in [21]. Analo-
gously, we have the following convergence result.

Theorem 4 (Convergence of Algorithm 4): As i → ∞,
(t(i),R(i)) obtained by Steps 1-5 of Algorithm 4 converges
to a KKT point of Problem 13 [28].

Proof 8: The constraint in (32) is linear and
each constraint function of (33),

∑
G∈X R̃G −

B
∑

n∈N log2

(
1 + λ

�
G∈X tG,n

σ2+λ
�

G′∈G\G(k) tG′,n

)
can be

regarded as a difference between two convex functions,∑
G∈X R̃G − B

∑
n∈N log2

(
σ2 +

∑
G′∈G\G(k)∪X tG′,n

)
and −B

∑
n∈N log2

(
σ2 +

∑
G′∈G\G(k) tG′,n

)
. Thus,

Problem 12 is a DC programming. Linearizing
−B

∑
n∈N log2

(
σ2 +

∑
G′∈G\G(k) tG′,n

)
at t(i) and preserv-

ing
∑

G∈X R̃G − B
∑

n∈N log2

(
σ2 +

∑
G′∈G\G(k)∪X tG′,n

)
give the constraints in (34). Thus, Step 1-5 of Algorithm
4 implements CCCP. It has been validated in [28] that solving
DC programming through CCCP always returns a KKT point.
Therefore, we can show Theorem 4. �

V. COMPARISONS BETWEEN SLOW FADING SCENARIO

AND FAST FADING SCENARIO

First, we compare the computational complexities for the
weighted sum average rate maximization in the slow fading
scenario and the weighted sum ergodic rate maximization in
the fast fading scenario. Algorithm 1 (for obtaining a KKT
point in the slow fading scenario based on CCCP) has higher
computational complexity than Algorithm 2 (for obtaining

a KKT point in the fast fading scenario based on SSCA).
However, noting that SSCA converges more slowly than CCCP
in general, Algorithm 2 has longer computational time to
achieve satisfactory performance than Algorithm 1. Besides,
Algorithm 3 (for obtaining a low complexity solution in the
fast fading scenario with spatially correlated channel based
on CCCP) has the same computational complexity as Algo-
rithm 1. Last, Algorithm 4 (for obtaining a low complexity
solution in the fast fading scenario with i.i.d. channel based on
CCCP) has lower computational complexity than Algorithm 1.

Next, we compare the practical implementation complexi-
ties for the solutions in slow fading scenario and the fast fading
scenario. In the slow fading scenario, the BS must obtain the
instantaneous channel condition and adjust the beamforming
vectors at each slot according to the instantaneous system
channel state. By contrast, in the fast fading scenario, the BS
requires only the knowledge of channel statistics and adopts
constant beamforming vectors, relying on channel statistics
over slots. Therefore, the practical implementation complexi-
ties in the slow fading scenario are obviously higher than the
those in the fast fading scenario.

Finally, we compare the optimal values of the weighted sum
average rate maximization in the slow fading scenario and
weighted sum ergodic rate maximization in the fast fading
scenario. As the beamforming vectors in the slow fading sce-
nario are adjusted at each slot according to the instantaneous
system channel state, it is expected that the optimal value in
the slow fading scenario is larger than that in the fast fading
scenario. Although the gain in the optimal value cannot be
shown analytical, it will be numerically verified in Section VI.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed solu-
tions obtained by Algorithm 1 for the slow fading scenario,
namely Slow-Prop-RS and Algorithm 2, Algorithm 3, and
Algorithm 4 for the fast fading scenario, namely Fast-Prop-RS,
Fast-Prop-COR-RS, and Fast-Prop-IID-RS, respectively. In the
slow fading scenario, we consider three baseline schemes,
namely Slow-1L-RS, Slow-NOMA, and Slow-OFDMA. Slow-
1L-RS and Slow-NOMA (both with joint decoding for fair
comparison) extend 1-layer rate splitting (where each mes-
sage is split into one private part and only one common
part) [16] and NOMA [34], both for unicast in one slot,
to general multicast in the considered slow fading scenario.
More specifically, Slow-1L-RS and Slow-NOMA implement
Algorithm 1 to obtain KKT points of Problem 2 with GS =
{S,K},S ∈ S and with GS = {S},S ∈ S, respec-
tively.12 Slow-OFDMA adopts OFDMA and considers the
maximum ratio transmission (MRT) on each subcarrier and
optimizes the subcarrier and power allocation [5]. In the fast
fading scenario, we consider one baseline scheme, namely
Fast-1L-RS.13 Similarly, Fast-1L-RS (with joint decoding)

12Slow-NOMA adopts NOMA with joint decoding, which outperforms the
commonly adopted NOMA with successive decoding [34]. Note that it is
challenging to optimize the subsequent decoding order for NOMA in general
multicast.

13As existing works on NOMA and OFDMA mainly concentrate on one
single slot, we do not consider their extensions to the fast fading scenario,
whose performance can be far from satisfactory.
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Fig. 5. Weighted sum rate versus the system parameters in the case of spatially correlated channel.

Fig. 6. Rates of transmission units of the proposed solutions versus G in the case of spatially correlated channel.

extends 1-layer rate splitting for unicast in the fast fading
scenario [18] to general multicast in the fast fading scenario.
In particular, Fast-1L-RS implements Algorithm 2 to obtain
a KKT point of Problem 5 with GS = {S,K},S ∈ S. Note
that for the proposed solutions, GS = {X |S ⊆ X ⊆ K}.
All algorithms adopt the same stopping criterion that the
change in the objective function between two consecutive
iterations is smaller than 0.1. In the slow fading scenario,
we generate 100 random realizations of ϑ, solve the weighted
sum rate maximization problem for each realization, and
evaluate the weighted sum average rate of each scheme over
the 100 random realizations. In the sequel, the weighted sum
average rate in the slow fading scenario and the weighted sum
ergodic rate in the fast fading scenario are both termed the
weighted sum rate for ease of presentation.

In the simulation, we set K = 3, I = 7, I1 = {1, 4, 5, 7},
I2 = {2, 4, 6, 7}, and I3 = {3, 5, 6, 7}. As a result, we have
P{1} = {1}, P{2} = {2}, P{3} = {3}, P{1,2} = {4},
P{1,3} = {5}, P{2,3} = {6}, and P{1,2,3} = {7}. Addition-
ally, we set αS = 1/7,S ∈ S, B = 30 kHz, N = 72, and
σ2 = 10−9 W. We consider two cases of channel distributions,
i.e., spatially correlated channel with the correlation following
the one-ring scattering model as in [21] and i.i.d. channel
with ϑk,n ∼ CN (0, IM×M ), k ∈ K, n ∈ N . Note that the
channel covariance matrix in the case of a spatially correlated
channel is normalized for a fair comparison. When applying
the one-ring scattering model, let G denote the number of user
groups. We set the same angular spreads for the G groups and
the same azimuth angle for the users in each group as in [21].
Note that G is related to the channel correlation among users.
Specifically, the correlation increases as G decreases. When
G = 1, users belong to one group and have the same channel
covariance matrix. When G = 3, users are in different groups
and have different channel covariance matrices.

First, we show the weighted sum rate of each scheme in the
case of the spatially correlated channel. Fig. 5 illustrates the
weighted sum rate versus the number of transmit antennas M ,
the total transmission power budget P , and the number of user

groups G in the one-ring scattering model, respectively, in the
case of the spatially correlated channel. From Fig. 5, we have
the following observations. Firstly, the weighted sum rate of
each scheme increases with M , P , and G. Secondly, in the
slow fading and fast fading scenarios, the proposed solutions
outperform the corresponding baseline schemes. The gain
of Slow-Prop-RS (Fast-Prop-RS or Fast-Prop-COR-RS) over
Slow-1L-RS (Fast-1L-RS) is because each proposed solution
unleashes the full potential of the flexibility of rate splitting.
The gain of Slow-Prop-RS over Slow-NOMA arises because
the cost for Slow-NOMA to suppress interference is high.
In contrast, rate splitting together with joint decoding partially
decodes interference and partially treats interference as noise.
The gain of Slow-Prop-RS over Slow-OFDMA comes from
an effective nonorthogonal transmission design. Thirdly,
Slow-Prop-RS (Slow-1L-RS) outperforms Fast-Prop-RS
(Fast-1L-RS). The gain arises from the fact that Slow-Prop-
RS (Slow-1L-RS) optimizes the beamforming vectors at each
slot according to the instantaneous system channel state,
whereas Fast-Prop-RS (Fast-1L-RS) adopts the time-invariant
beamforming vectors which are optimized according to the
channel statistics. Additionally, Fig. 5 (c) shows that the gain
of Slow-Prop-RS (Fast-Prop-RS or Fast-Prop-COR-RS) over
Slow-1L-RS (Fast-1L-RS) and the gain of Slow-Prop-RS
over Slow-NOMA increase as G decreases, demonstrating the
advantage of flexibly dealing with interference in the presence
of channel correlation among users. Fig. 6 shows the rates
of the transmission units in each proposed solution versus
the number of user groups G in the case of the spatially
correlated channel. We can see that for each proposed
solution, R̃{1}, R̃{2}, and R̃{3} increase with G, whereas
R̃{1,2}, R̃{1,3}, R̃{2,3}, and R̃{1,2,3} decrease with G. This
is because as channel correlation among the users decreases,
it is efficient to decode less interference and treat more
interference as noise.

Next, we show the weighted sum rate of each scheme in the
case of the i.i.d. channel. Fig. 7 (a) and (b) plot the weighted
sum rate versus the number of transmit antennas M and the
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Fig. 7. Weighted sum rate versus the system parameters in the case of i.i.d.
channel.

Fig. 8. Rates of transmission units of Fast-Prop-IID-RS.

total transmission power budget P in the case of the i.i.d.
channel. We observe from these two figures that the weighted
sum rate of Fast-Prop-IID-RS does not change with M . This is
because Problem 12 is irrelevant to M . Besides, we have the
same observations as from Fig. 5 (a) and (b). Fig. 8 shows
the rates of the transmission units of Fast-Prop-IID-RS in
the case of the i.i.d. channel. We can see from Fig. 8 that
R̃{1}, R̃{2}, and R̃{3} are identical, and R̃{1,2}, R̃{1,3}, and
R̃{2,3} are identical. The reasons are as follows. The general
multicast setup is symmetric w.r.t. all users and their request-
ing messages, i.i.d. channel is considered, and time-invariant
beamforming is adopted in the fast fading scenario.

VII. CONCLUSION

While applications such as content delivery are responsible
for a large and increasing fraction of Internet traffic, general
multicast communication will play a central role for future
6G and beyond networks. This paper investigated the
optimization of general rate splitting for general multicast.
We optimized the transmission beamforming vectors and
rates of sub-message units to maximize the weighted sum
average rate and the weighted sum ergodic rate in the slow
fading and fast fading scenarios, respectively. We proposed
iterative algorithms to obtain KKT points and low-complexity
solutions in both scenarios using various optimization
techniques. The proposed optimization framework generalizes
the existing ones for rate splitting for unicast, unicast with
a common message, single-group multicast, and multi-
group multicast. Numerical results demonstrate notable
gains of the proposed solutions over existing schemes
and reveal the impact of channel correlation among users
on the performance of general rate splitting for general
multicast.

There are still some key aspects that we leave for future
investigations. One direction is to go beyond linear approaches
and investigate nonlinear precoders such as binning [10], [35].

Another interesting perspective is general multicast with par-
tial channel state information at the transmitter side [21], [36].
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